Synlett 2023; 34(03): 203-210
DOI: 10.1055/a-1968-2233
synpacts

Total Synthesis of (+)-Alstonlarsine A: Old Reactions in Modern Alkaloids Synthesis

Zorana B. Ferjancic
,
Filip J. Bihelovic
This research was supported by the Science Fund of the Republic of Serbia (Grant Number 7750119, project Acronym – New SMART Synthesis).


Abstract

(+)-Alstonlarsine A is a recently isolated monoterpenoid indole alkaloid, possessing a novel pentacyclic skeleton and interesting biological activity, making it an attractive target for synthetic chemists. In this article we focus on its total synthesis, grounded on enamine formation/Diels–Alder reaction domino sequence, as well as a novel methodology for indole C2 functionalization via carbenoid insertion, which could also allow for the synthesis of other indole alkaloids possessing cycloalka[b]indole subunits.
1 Introduction

2 Diels–Alder Reaction

3 Methodology Studies

4 Total Synthesis of (+)-Alstonlarsine A by Bihelovic and Ferjancic

5 Total Synthesis of (+)-Alstonlarsine A by Zhai

6 Summary



Publication History

Received: 18 October 2022

Accepted: 26 October 2022

Accepted Manuscript online:
26 October 2022

Article published online:
23 November 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Kolbe H. Ann. Chem. Pharm. 1845; 54: 145
    • 3a Zhu X.-X, Fan Y.-Y, Xu L, Liu Q.-F, Wu J.-P, Li J.-Y, Li J, Gao K, Yue J.-M. Org. Lett. 2019; 21: 1471
    • 3b Hill RA, Sutherland A. Nat. Prod. Rep. 2019; 36: 850
    • 4a Zhao M, Dai C, Li Y, Liu Y, Li J.-Y, Hou X. Heterocycles 2021; 102: 1536
    • 4b Ali I, Park S, Jung ME, Lee N, Bibi M, Chae CH, Yang K.-M, Kim S.-J, Choi G, Lee K. Bull. Kor. Chem. Soc. 2020; 41: 567
    • 4c Wang S, Xu L, Lu Y.-T, Liu Y.-F, Han B, Liu T, Tang J, Li J, Wu J, Li J.-Y, Yu L.-F, Yang F. Eur. J. Med. Chem. 2017; 130: 195
    • 4d Jung ME, Byun BJ, Kim HM, Lee JY, Park JH, Lee N, Son YH, Choi SU, Yang KM, Kim SJ, Lee K, Kim YC, Choi G. Bioorg. Med. Chem. Lett. 2016; 26: 2719
    • 4e Marvaldi L, Hausott B, Auer M, Leban J, Klimaschewski L. Neurochem. Res. 2014; 39: 403
    • 4f Gao LJ, Kovackova S, Sala M, Ramadori AT, De Jonghe S, Herdewijn P. J. Med. Chem. 2014; 57: 7624
    • 4g Leonczak P, Gao LJ, Ramadori AT, Lescrinier E, Rozenski J, De Jonghe S, Herdewijn P. ChemMedChem 2014; 9: 2587
    • 5a McGargill MA, Choy C, Wen BG, Hedrick SM. J. Immunol. 2008; 181: 7593
    • 5b Ramos SJ, Hernandez JB, Gatzka M, Walsh CM. J. Immunol. 2008; 181: 7606
    • 6a Edwards BA, Harris TL, Floersh H, Lukens JR, Zaki MH, Vogel P, Kanneganti T.-D, Bui JD, McGargill MA. Int. Immunol. 2015; 27: 161
    • 6b Mao J, Luo H, Wu J. J. Cell. Biochem. 2008; 105: 1073
    • 6c Wang S, Welte T, McGargill M, Town T, Thompson J, Anderson JF, Flavell RA, Fikrig E, Hedrick SM, Wang T. J. Immunol. 2008; 181: 2084
  • 7 Weist BM, Hernandez JB, Walsh CM. Am. J. Transplant. 2012; 12: 2220
    • 8a Tietze LF. Domino Reactions: Concepts for Efficient Organic Synthesis. Wiley-VCH; Weinheim: 2014
    • 8b Snyder SA. Applications of Domino Transformations in Organic Synthesis. In Science of Synthesis, Vol. 1. Thieme; Stuttgart: 2016
    • 8c Snyder SA. Applications of Domino Transformations in Organic Synthesis. In Science of Synthesis, Vol. 2. Thieme; Stuttgart: 2016
    • 9a Akgün E, Tunali M, Erdönmez G. J. Heterocycl. Chem. 1989; 26: 1869
    • 9b Blechert S, Wirth T. Tetrahedron Lett. 1992; 33: 6621
    • 9c Wiest O, Steckhan E. Angew. Chem., Int. Ed. Engl. 1993; 32: 901
    • 9d Vassileva E, Sapi J, Laronze J.-Y, Mirand C, Lévy J. Monatsh. Chem. 2002; 133: 151
    • 9e Pirovano V, Decataldo L, Rossi E, Vicente R. Chem. Commun. 2013; 49: 3594
    • 9f Xie F, Li X, Xu L, Ma J, Sun L, Zhang B, Lin B, Cheng M, Liu Y. Adv. Synth. Catal. 2022; 364: 873
  • 10 Blechert S, Knier R, Schroers H, Wirth T. Synthesis 1995; 592
  • 11 Jones SB, Simmons B, MacMillan DW. C. J. Am. Chem. Soc. 2009; 131: 13606
    • 12a Zheng C, Lu Y, Zhang J, Chen X, Chai Z, Ma W, Zhao G. Chem. Eur. J. 2010; 16: 5853
    • 12b Horning BD, MacMillan DW. C. J. Am. Chem. Soc. 2013; 135: 6442
    • 13a Kalaus G, Kiss M, Kajtár-Peredy M, Brlik J, Szabó L, Szántay C. Heterocycles 1985; 23: 2783
    • 13b Magnus P, Giles M. Tetrahedron Lett. 1993; 34: 6355
    • 13c Danieli B, Lesma G, Palmisano G, Passarella D, Silvani A. Tetrahedron 1994; 50: 6941
    • 13d Kuehne ME, Brook CS, Frasier DA. Nat. Prod. Lett. 1994; 4: 65
    • 13e Kuehne ME, Brook CS, Frasier DA, Xu F. J. Org. Chem. 1995; 60: 1864
    • 13f Kobayashi S, Peng G, Fukuyama T. Tetrahedron Lett. 1999; 40: 1519
    • 13g Yokoshima S, Ueda T, Kobayashi S, Sato A, Kuboyama T, Tokuyama H, Fukuyama T. J. Am. Chem. Soc. 2002; 124: 2137
    • 13h Schneider C. Angew. Chem. Int. Ed. 2002; 41: 4217
    • 13i Yokoshima S, Ueda T, Kobayashi S, Sato A, Kuboyama T, Tokuyama H, Fukuyama T. Pure Appl. Chem. 2003; 75: 29
    • 13j Kalaus G, Tóth F, Greiner I, Kajtár-Peredy M, Gömöry A, Hazai L, Szántay C. Heterocycles 2006; 68: 257
    • 13k Han-ya Y, Tokuyama H, Fukuyama T. Angew. Chem. Int. Ed. 2011; 50: 4884
    • 13l Tan PT, Seayad J, Dixon DJ. Angew. Chem. Int. Ed. 2016; 55: 13436
    • 14a Kuehne ME, Roland DM, Hafter R. J. Org. Chem. 1978; 43: 3705
    • 14b Kuehne ME, Matsko TH, Bohnert JC, Kirkemo CL. J. Org. Chem. 1979; 44: 1063
    • 14c Kuehne ME, Huebner JA, Matsko TH. J. Org. Chem. 1979; 44: 2477
    • 14d Kuehne ME, Kirkemo CL, Matsko TH, Bohnert JC. J. Org. Chem. 1980; 45: 3259
    • 14e Kuehne ME, Bohnert JC. J. Org. Chem. 1981; 46: 3443
    • 14f Kuehne ME, Okuniewicz FJ, Kirkemo CL, Bohnert JC. J. Org. Chem. 1982; 47: 1335
    • 14g Kuehne ME, Bornmann WG, Earley WG, Marko I. J. Org. Chem. 1986; 51: 2913
    • 14h Kuehne ME, Frasier DA, Spitzer TD. J. Org. Chem. 1991; 56: 2696
    • 14i Kuehne ME, Brook CS, Frasier DA, Xu F. J. Org. Chem. 1994; 59: 5977
    • 14j Pilarčík T, Havlíček J, Hájíček J. Tetrahedron Lett. 2005; 46: 7909
    • 14k Mizoguchi H, Oikawa H, Oguri H. Nat. Chem. 2014; 6: 57
    • 14l Thanetchaiyakupa A, Rattanarata H, Areea S, Duangthongyoua T, Nanoka T, Chuanopparata N, Ngernmeesri P. Synthesis 2022; 54: 1850
  • 15 Jackson RW, Manske RH. Can. J. Res., Sect. B 1935; 13: 170
  • 16 Delgado-Rebollo M, Prieto A, Pérez PJ. ChemCatChem 2014; 6: 2047
  • 17 Johansen MB, Kerr MA. Org. Lett. 2010; 12: 4956
    • 18a Horner L, Hoffmann H, Wippel HG. Chem. Ber. 1958; 91: 61
    • 18b Horner L, Hoffman H, Wippel HG, Klahre G. Chem. Ber. 1959; 92: 2499
    • 18c Wadsworth WS, Emmons WD. J. Am. Chem. Soc. 1961; 83: 1733
    • 19a Blanchette MA, Choy W, Davis JT, Essenfeld AP, Masamune S, Roush WR, Sakai T. Tetrahedron Lett. 1984; 25: 2183
    • 19b Rathke MW, Nowak M. J. Org. Chem. 1985; 50: 2624

      For selected review articles, see:
    • 20a Gierok J, Benedix L, Hiersemann M. Eur. J. Org. Chem. 2021; 3748
    • 20b Vivekanand T, Satpathi B, Bankar SK, Ramasastry SS. V. RSC Adv. 2018; 8: 18576
    • 20c Stempel E, Gaich T. Acc. Chem. Res. 2016; 49: 2390
  • 21 Ferjancic Z, Kukuruzar A, Bihelovic F. Angew. Chem. Int. Ed. 2022; 61: e202210297