Synthesis 2023; 55(07): 1053-1068
DOI: 10.1055/a-2002-5733
short review

Synthesis of Chiral Primary Amines via Enantioselective Reductive Amination: From Academia to Industry

Yongjie Shi
a   Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
,
Nianxin Rong
b   Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. of China
,
Xumu Zhang
a   Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, P. R. of China
,
Qin Yin
b   Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. of China
› Author Affiliations
The work is supported by National Natural Science Foundation of China (No. 22071097 and 21991113), Shenzhen Science and Technology Innovation Program (JCYJ20190809142013478, JCYJ20220818100804010), and the Guangdong Basic and Applied Basic Research Foundation (2021B1515020062). Q. Yin is indebted to Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, for providing a starting grant.


Abstract

Chiral primary amines widely exist in drugs and are exceptionally important subunits or synthons in the syntheses of chiral secondary and tertiary amines of medicinal interest. Metal-catalyzed enantioselective reductive amination (ERA) of ketones with ammonium salts or ammonia provides a direct method for their synthesis. Although very useful, progress in this field has been very slow and important advances have only been achieved in the last few years. Several major challenges exist in this reaction, including (1) the reversible formation of unstable NH-imine intermediates; (2) the strong coordination property of N-containing reagents toward metal species; and (3) the lack of efficient catalytic systems that enable high enantiocontrol. Generally, the efficiency and enantiocontrol of this reaction is dependent on the substrate type, for instance, the use of α-keto esters/amides or aryl alkyl ketones is well established and they have even been used in the industrial production of chiral amine drugs. However, highly enantioselective control in dialkyl ketones, cyclic ketones, and α-keto acids remains unsolved. Herein, the historical development of ERA reactions with ammonium salts or ammonia gas is summarized, and novel synthetic applications toward useful synthons or drugs are presented. In addition, the factors restricting the growth of this method are also discussed.

1 Introduction

2 Enantioselective Reductive Amination via Hydrogenation

2.1 Enantioselective Reductive Amination of β-Keto Esters/Amides

2.2 Enantioselective Reductive Amination of Simple Ketones

2.3 Enantioselective Reductive Amination of α-Functionalized Ketones

2.4 Enantioselective Reductive Amination/Cyclization Cascade Reactions

2.5 Others

3 Enantioselective Reductive Amination via Transfer Hydrogenation

4 Synthetic Applications

5 Conclusions and Outlook



Publication History

Received: 01 November 2022

Accepted after revision: 21 December 2022

Accepted Manuscript online:
21 December 2022

Article published online:
18 January 2023

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Lawrence SA. Amines: Synthesis, Properties and Applications . Cambridge University Press; Cambridge: 2004
    • 1b Methodologies in Amine Synthesis: Challenges and Applications. Ricci A, Bernardi L. Wiley-VCH; Weinheim: 2021
    • 3a Nugent TC, Ghosh AK, Wakchaure VN, Mohanty RR. Adv. Synth. Catal. 2006; 348: 1289
    • 3b Wakchaure VN, Mohanty RR, Shaikh AJ, Nugent TC. Eur. J. Org. Chem. 2007; 2007: 959
    • 3c Nugent TC, Negru DE, El-Shazly M, Hu D, Sadiq A, Bibi A, Umar MN. Adv. Synth. Catal. 2011; 353: 2085
  • 4 Yin Q, Shi YJ, Wang JX, Zhang XM. Chem. Soc. Rev. 2020; 49: 6141

    • For selected recent reviews or books on imine asymmetric hydrogenation, see:
    • 5a Barrios-Rivera J, Xu YJ, Wills M, Vyas VK. Org. Chem. Front. 2020; 7: 3312
    • 5b Abdine RA. A, Hedouin G, Colobert F, Wencel-Delord J. ACS Catal. 2021; 11: 215
    • 5c Ponra S, Boudet B, Phansavath P, Ratovelomanana-Vidal V. Synthesis 2021; 53: 193
    • 5d Biosca M, Diéguez M, Antonio ZG. Asymmetric Hydrogenation in Industry . In Advances in Catalysis, Vol. 68. Diéguez M, Pizzano A. Elsevier; Cambridge: 2021: 341
    • 5e Zhang X, Shao PL. Industrial Applications of Asymmetric (Transfer) Hydrogenation. In Asymmetric Hydrogenation and Transfer Hydrogenation, Chap. 6. Ratovelomanana-Vidal V, Phansavath P. Wiley-VCH; Weinheim: 2021: 175
    • 6a Dang TP, Kagan HB. J. Chem. Soc., Chem. Commun. 1971; 481
    • 6b Vineyard BD, Knowles WS, Sabacky MJ, Bachman GL, Weinkauff DJ. J. Am. Chem. Soc. 1977; 99: 5946
  • 7 Cabré A, Verdaguer X, Riera A. Chem. Rev. 2022; 122: 269
    • 8a Xie JH, Zhu SF, Zhou QL. Chem. Rev. 2011; 111: 1713
    • 8b Morisaki K, Morimoto H, Oshima T. ACS Catal. 2020; 10: 6924
    • 9a Wang C, Xiao JL. Top. Curr. Chem. 2014; 343: 261
    • 9b Murugesan K, Senthamarai T, Chandrashekhar VG, Natte K, Kamer PC. J, Beller M, Jagadeesh RV. Chem. Soc. Rev. 2020; 49: 6273
    • 9c Irrgang T, Kempe R. Chem. Rev. 2020; 120: 9583
  • 10 Blaser HU, Buser HP, Jalett HP, Pugina B, Spindler F. Synlett 1999; 867
    • 11a Tian YY, Hu LA, Wang YZ, Zhang XM, Yin Q. Org. Chem. Front. 2021; 8: 2328
    • 11b Reshi NU. D, Saptal VB, Beller M, Bera JK. ACS Catal. 2021; 11: 13809
  • 12 Dai ZJ, Zhang XM, Yin Q. Chin. J. Org. Chem. 2022; 42: 2261
  • 13 Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL. Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaksh A, Zhang TY. Green Chem. 2007; 9: 411
  • 14 Bunlaksananusorn T, Rampf F. Synlett 2005; 2682
  • 15 Steinhuebel D, Sun Y, Matsumura K, Sayo N, Saito T. J. Am. Chem. Soc. 2009; 131: 11316
  • 16 Lou YZ, Hu YT, Lu JX, Guan FF, Gong GL, Yin Q, Zhang XM. Angew. Chem. Int. Ed. 2018; 57: 14193
  • 17 Liu YF, Wang LZ, Li YJ, Ma BD, Chen GQ, Zhang XM. Green Synth. Catal. 2022; 3: 298
  • 18 Donaire JG, Hermsen M, Wysocki J, Ernst M, Rominger F, Trapp O, Hashmi AS. K, Schäfer A, Comba P, Schaub T. J. Am. Chem. Soc. 2018; 140: 355
  • 19 Tan XF, Gao S, Zeng WJ, Xin S, Yin Q, Zhang XM. J. Am. Chem. Soc. 2018; 140: 2024
  • 20 Ghosh T, Ernst M, Hashmi AS. K, Schaub T. Eur. J. Org. Chem. 2020; 2020: 4796
  • 21 Yamada M, Azuma K, Yamano M. Org. Lett. 2021; 23: 3364
  • 22 Pan HJ, Xie Y, Liu M, Shi Y. RSC Adv. 2014; 4: 2389
  • 23 Shi YJ, Wang JX, Yang FF, Wang CH, Zhang XM, Chiu P, Yin Q. Chem. Commun. 2022; 58: 513
    • 25a Shen PX, Hu L, Shao Q, Hong K, Yu JQ. J. Am. Chem. Soc. 2018; 140: 6545
    • 25b Hao W, Bay KL, Harris CF, King DS, Guzei IA, Aristov MM, Zhuang Z, Plata RE, Hill DE, Houk KN, Berry JF, Yu J.-Q, Blackmond DG. ACS Catal. 2021; 11: 11040
  • 26 Li F, Yang LC, Zhang J, Chen JS, Renata H. Angew. Chem. Int. Ed. 2021; 60: 17680
  • 27 Shi YJ, Tan XF, Gao S, Zhang Y, Wang JX, Zhang XM, Yin Q. Org. Lett. 2020; 22: 2707
    • 28a Zhang Y, Liu YQ, Hu LA, Zhang XM, Yin Q. Org. Lett. 2020; 22: 6479
    • 28b Pons V, Beaumont S, Tran Huu Dau ME, Iorga BI, Dodd RH. ACS Med. Chem. Lett. 2011; 2: 565
    • 29a Hu LA, Zhang Y, Zhang QW, Yin Q, Zhang XM. Angew. Chem. Int. Ed. 2020; 59: 5321
    • 29b Huang HZ, Chang MX. Chin. J. Org. Chem. 2020; 40: 1802
  • 30 Gao ZF, Liu JW, Huang HZ, Geng HL, Chang MX. Angew. Chem. Int. Ed. 2021; 60: 27307
  • 31 Ogo S, Uehara K, Abura T, Fukuzumi S. J. Am. Chem. Soc. 2004; 126: 302
    • 32a Wang C, Pettman A, Bacsa J, Xiao JL. Angew. Chem. Int. Ed. 2010; 49: 7548
    • 32b Talwar D, Salguero NP, Robertson CM, Xiao JL. Chem. Eur. J. 2014; 20: 245
  • 33 Tanak K, Miki T, Murata K, Yamaguchi A, Kayaki Y, Kuwata S, Ikariya T, Watanabe M. J. Org. Chem. 2019; 84: 1096
  • 34 Polishchuk I, Sklyaruk J, Lebedev Y, Rueping M. Chem. Eur. J. 2021; 27: 5919
  • 35 Smith J, Kacmaz A, Wang C, Villa-Marcos B, Xiao J. Org. Biomol. Chem. 2021; 19: 279
    • 36a Mas-Roselló J, Smejkal T, Cramer N. Science 2020; 368: 1098
    • 36b Mas-Roselló J, Cope CJ, Tan E, Pinson B, Robinson A, Smejkal T, Cramer N. Angew. Chem. Int. Ed. 2021; 60: 15524
  • 37 Dai ZJ, Pan YM, Wang SG, Zhang XM, Yin Q. Org. Biomol. Chem. 2021; 19: 8934
  • 38 Kadyrov R, Riermeier TH. Angew. Chem. Int. Ed. 2003; 42: 5472
  • 39 Boggs SD, Cobb JD, Gudmundsson KS, Jones LA, Matsuoka RT, Millar A, Patterson DE, Samano V, Trone MD, Xie S, Zhou XM. Org. Process Res. Dev. 2007; 11: 539
  • 40 Matsumura K, Zhang X, Hori K, Murayama T, Ohmiya T, Shimizu H, Saito T, Sayo N. Org. Process Res. Dev. 2011; 15: 1130
  • 41 Mattei P, Moine G, Püntener K, Schmid R. Org. Process Res. Dev. 2011; 15: 353
  • 42 Brewer AC, Ruble JC, Vandeveer HG, Frank SA, Nevill CR. Jr. Org. Process Res. Dev. 2021; 25: 576
  • 43 Haas J, Andrews SW, Jiang Y, Zhang G. WO 2010048314A1, 2010
  • 44 Yamada M, Hamamoto S, Hayashi K, Takaoka K, Matsukura H, Yotsuji M, Yonezawa K, Ojima K, Takamatsu T, Taya K, Yamamoto H, Kiyoto T, Kotsubo H. WO 9921849, 1999
    • 45a Cui JJ, Li Y, Rogers EW, Zhai D, Deng W, Ung J. WO 2017004342, 2017
    • 45b Li J, Zhang D, Feng J, Wang Z, Pan L, Hu J, Chen W. WO 2019201282, 2019
  • 46 Yin Q, Xu L. CN 114349648A, 2022
  • 47 Homogeneous Hydrogenation with Non-Precious Catalysts. Teichert JF. Wiley-VCH; Weinheim: 2020