Synthesis 2023; 55(12): 1834-1843
DOI: 10.1055/a-2020-9090
short review

Recent Advances in the Trifluoromethylation Reactions of Isonitriles To Construct CF3-Substituted N-Heterocycles

Klára Aradi
,
Loránd Kiss
The authors gratefully acknowledge financial support from the National Research, Development and Innovation Office of Hungary (NKFIH/OTKA K 142266).


Abstract

Due to the increasing need for fluorine-containing drugs, the synthesis of organofluorine scaffolds has become a highly researched area of synthetic organic chemistry. The introduction of the trifluoromethyl group into the structure of an organic molecule has considerable potential and several advantages concerning the characteristics of the fluorinated pharmaceuticals. The incorporation of a CF3 group at multiple bonds containing a nitrogen heteroatom is a relatively new field and currently it is an expanding area of synthetic chemistry. This short review summarizes, for the first time, recent developments in trifluoromethylation reactions of isonitriles.

1 Introduction

2 Trifluoromethylation Reactions of Isonitriles

2.1 Synthesis of Trifluoromethylated Phenanthridine Derivatives

2.2 Synthesis of Trifluoromethylated Quinoline Derivatives

2.3 Synthesis of Trifluoromethylated Isoquinoline Derivatives

2.4 Synthesis of Trifluoromethylated Indole Derivatives

2.5 Synthesis of Trifluoromethylated Pyridine Derivatives

3 Summary and Outlook



Publication History

Received: 23 December 2022

Accepted after revision: 26 January 2023

Accepted Manuscript online:
26 January 2023

Article published online:
06 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 2a Wang Q, Han J, Sorochinsky A, Landa A, Butler G, Soloshonok VA. Pharmaceuticals 2022; 15: 999
    • 2b Han J, Remete AM, Dobson LS, Kiss L, Izawa K, Moriwaki H, Soloshonok VA, O’Hagan D. J. Fluorine Chem. 2020; 239: 109639
    • 2c Inoue M, Sumii Y, Shibata N. ACS Omega 2020; 5: 10633
    • 2d Han J, Kiss L, Mei H, Remete AM, Ponikvar-Svet M, Sedgwick DM, Roman R, Fustero S, Moriwaki H, Soloshonok VA. Chem. Rev. 2021; 121: 4678
    • 3a Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 3b Tiz DB, Bagnoli L, Rosati O, Marini F, Sancineto L, Santi C. Molecules 2022; 27: 1643
  • 4 Zhu W, Wang J, Wang S, Gu Z, Acena JL, Izawa K, Liu H, Soloshonok VA. J. Fluorine Chem. 2014; 167: 37
    • 5a Yamazaki T, Taguchi T, Ojima I. Fluorine in Medicinal Chemistry and Chemical Biology . Ojima I. Wiley-Blackwell; Chichester: 2009: 3
    • 5b Liang T, Neumann CN, Ritter T. Angew. Chem. Int. Ed. 2013; 52: 8214
    • 5c Groult H, Leroux F, Tressaud A. Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Academic Press; London: 2017
    • 5d Wang L, Wei J, Wu R, Cheng G, Li X, Hu J, Hu Y, Sheng R. Org. Chem. Front. 2017; 4: 214
    • 6a Nair AS, Singh AK, Kumar A, Kumar S, Sukumaran S, Koyiparambath VP, Pappachen LK, Rangarajan TM, Kim H, Mathew B. Processes 2022; 10: 2054
    • 6b He J, Li Z, Dhawan G, Zhang W, Sorochinsky AE, Butler G, Soloshonok VA, Han J. Chin. Chem. Lett. 2023; 34: 107578
    • 7a Joule JA, Mills K. Heterocyclic Chemistry . Wiley-Blackwell; Chichester: 2009: 188-196
    • 7b Joule JA, Mills K. Heterocyclic Chemistry . Wiley-Blackwell; Chichester: 2009: 402-414
    • 7c Katritzky AR, Pozharskii AF. Handbook of Heterocyclic Chemistry . Elsevier Science; Amsterdam: 2000
    • 8a Larock RC. Acetylene Chemistry: Chemistry, Biology and Material Science . Diederich F, Stang PJ, Tykwinski RR. Wiley-Blackwell; Chichester: 2005: 51-99
    • 8b Muralirajan K, Cheng CH. Transition Metal-Catalyzed Heterocycle Synthesis via C–H Activation . Wu XF. Wiley-Blackwell; Chichester: 2016: 117-160
    • 8c Neto JS. S, Zeni G. Org. Chem. Front. 2020; 7: 155
    • 8d Hsieh JC, Su HL. Synthesis 2020; 52: 819
    • 8e Gao Y, Zhao Q, Li L, Ma YN. Chem. Rec. 2022; 22: e202100218
    • 8f Sharma R, Kour P, Kumar A. J. Chem. Sci. 2018; 130: 73
    • 8g Ramann GA, Cowen BJ. Molecules 2016; 21: 986
    • 8h Correia JT. M, Santos MS, Pissinati EF, da Silva GP, Paixão MW. Chem. Rec. 2021; 21: 2666
    • 9a Langlois BR. Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 125-140
    • 9b Toulgoat F, Billard T. Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 141-179
    • 9c Dilman AD. Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 181-199
    • 9d Qing FL, Xu XH. Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 201-222
    • 9e Umemoto T. Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 265-287
    • 9f Prakash GK. S, Zhang Z. Modern Synthesis Processes and Reactivity of Fluorinated Compounds . Groult H, Leroux F, Tressaud A. Academic Press; London: 2017: 289-337
    • 10a Merino E, Nevado C. Chem. Soc. Rev. 2014; 43: 6598
    • 10b Alonso C, Marigorta EM, Rubiales G, Palacios F. Chem. Rev. 2015; 115: 1847
    • 10c Oh EH, Kim HJ, Han SB. Synthesis 2018; 50: 3346
    • 10d Keerthika K, Nath S, Geetharani K. Catal. Sci. Technol. 2020; 10: 7142
    • 10e Remete AM, Nonn M, Novák TT, Csányi D, Kiss L. Chem. Asian J. 2022; 17: e202200395
    • 10f Remete AM, Nonn M, Volk B, Kiss L. Synthesis 2022; 54: 3753
    • 10g Zhang B, Studer A. Chem. Soc. Rev. 2015; 44: 3505
    • 10h Giustiniano M, Basso A, Mercalli V, Massarotti A, Novellino E, Tron GC, Zhu J. Chem. Soc. Rev. 2017; 46: 1295
    • 10i Wang L, Studer A. Org. Lett. 2017; 19: 5701
    • 10j Xu C, Song X, Guo J, Chen S, Gao J, Jiang J, Gao F, Li Y, Wang M. Org. Lett. 2018; 20: 3933
  • 11 Zhang B, Mück-Lichtenfeld C, Daniliuc CG, Studer A. Angew. Chem. Int. Ed. 2013; 52: 10792
  • 12 Yuan XC, Liu HL, Hu XB, Wei Y, Shi M. Chem. Eur. J. 2016; 22: 13059
  • 13 Lübbesmeyer M, Leifert D, Schäfer H, Studer A. Chem. Commun. 2018; 54: 2240
  • 14 Cheng Y, Jiang H, Zhang Y, Yu S. Org. Lett. 2013; 15: 5520
  • 15 Wang R, Jiang H, Cheng Y, Kadi AA, Fun H.-K, Zhang Y, Yu S. Synthesis 2014; 46: 2711
  • 16 Fu W, Zhu M, Xu C, Zou G, Wang Z, Ji B. J. Fluorine Chem. 2014; 168: 50
  • 17 Wang Q, Dong X, Xiao T, Zhou L. Org. Lett. 2013; 15: 4846
  • 18 Liu YR, Tu H.-Y, Zhang X.-G. Synthesis 2015; 47: 3460
  • 19 Li J, Caiuby CA, Paixão MW, Li C.-J. Eur. J. Org. Chem. 2018; 2018: 2498
  • 20 Tang X, Song S, Liu C, Zhu R, Zhang B. RSC Adv. 2015; 5: 76363
  • 21 Zhang B, Studer A. Org. Lett. 2014; 16: 3990
  • 22 Sakamato R, Kashiwagi H, Selvakumar S, Moteki SA, Maruoka K. Org. Biomol. Chem. 2016; 14: 6417
  • 23 Rong J, Deng L, Tan P, Ni C, Gu Y, Hu J. Angew. Chem. Int. Ed. 2016; 55: 2743
  • 24 Patel B, Hilton ST. Synlett 2015; 26: 79
  • 25 Mao S, Wang H, Liu L, Wang X, Zhou MD, Li L. Adv. Synth. Catal. 2020; 362: 2274
  • 26 Zhang B, Studer A. Org. Biomol. Chem. 2014; 12: 9895
  • 27 Cheng Y, Yuan X, Jiang H, Wang R, Ma J, Zhang Y, Yu S. Adv. Synth. Catal. 2014; 356: 2859
  • 28 Zhang B, Studer A. Org. Lett. 2014; 16: 1216
  • 29 Liu J, Li L, Yu L, Tang L, Chen Q, Shi M. Adv. Synth. Catal. 2018; 360: 2959
  • 30 Leifert D, Weidlich F, Adler F, Daniliuc CG, Alasmary FA, Studer A. Org. Lett. 2022; 24: 284
  • 31 Tong K, Zheng T, Zhang Y, Yu S. Adv. Synth. Catal. 2015; 357: 3681