Synthesis 2023; 55(18): 2843-2859
DOI: 10.1055/a-2036-2074
short review
Special Issue Electrochemical Organic Synthesis

Electrochemical Difunctionalization of Alkenes

Jing-Hao Qin
a   State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. of China
b   Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
,
Ning Nan
a   State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. of China
b   Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
,
Jin-Heng Li
a   State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. of China
b   Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. of China
c   State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, P. R. of China
d   School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. of China
› Author Affiliations
We thank the National Natural Science Foundation of China (Nos 21871126 and 22271245) and the Open Research Fund of School of Chemistry and Chemical Engineering, Henan Normal University (No. 2021ZD01) and Jiangxi Province Science and Technology Project (No. 20224BAB213014) for financial support.


Abstract

The electrochemical alkene difunctionalization reaction has become a powerful and sustainable tool for the efficient construction of vicinal difunctionalized structures in organic synthesis. Since only electrons are used as the redox agents, electrochemical alkene difunctionalization avoids the need for additional redox catalysts, metal catalysts, or chemical oxidants and does not generate chemical waste. Herein we summarize the latest contributions in the electrochemical difunctionalization of alkenes over the last 3–4 years. We discuss in detail the reaction features, scope, limitations, and mechanistic rationalizations of three categories of alkene difunctionalization methods: (1) electrochemical alkene difunctionalization terminated by nucleophiles, (2) electrochemical difunctionalization of alkenes terminated by radicals, and (3) electrochemical alkene difunctionalization terminated by functionality migration.

1 Introduction

2 Electrochemical Alkene Difunctionalization Terminated by Nucleophiles

2.1 Sulfonylative Difunctionalization of Alkenes

2.2 Sulfurizative/Sulfoxidative Difunctionalization of Alkenes

2.3 Azidotetrazolation of Alkenes

2.4 Trifluoromethylative Difunctionalization of Alkenes

2.5 Diarylation of Alkenes

3 Electrochemical Difunctionalization of Alkenes Terminated by Radicals

3.1 Direct Radical-Coupling-Enabled Alkene Difunctionalization

3.2 Metal-Mediated Radical Transfer Coupling Enabled Alkene Difunctionalization

3.3 Metalloid-Mediated Radical Transfer Coupling Enabled Alkene Difunctionalization

4 Electrochemical Alkene Difunctionalization Terminated by Functionality Migration

5 Summary and Outlook



Publication History

Received: 07 January 2023

Accepted after revision: 15 February 2023

Accepted Manuscript online:
15 February 2023

Article published online:
13 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For selected reviews, see:
    • 1a Surhone LM, Tennoe MT, Henssonow SF. Vicinal Difunctionalization . Betascript Publishing; Mauritius: 2010
    • 1b Song R.-J, Liu Y, Xie Y.-X, Li J.-H. Synthesis 2015; 47: 1195
    • 1c Chen J.-R, Yu X.-Y, Xiao W.-J. Synthesis 2015; 47: 604
    • 1d Yin G, Mu X, Liu G. Acc. Chem. Res. 2016; 49: 2413
    • 1e Petrone DA, Ye J, Lautens M. Chem. Rev. 2016; 116: 8003
    • 1f Dhungana RK, Kc S, Basnet P, Giri R. Chem. Rec. 2018; 18: 1314
    • 1g Giri R, Kc S. J. Org. Chem. 2018; 83: 3013
    • 1h Zhang J.-S, Liu L, Chen T, Han L.-B. Chem. Asian J. 2018; 13: 2277
    • 1i Fujihara T, Tsuji Y. Synthesis 2018; 50: 1737
    • 1j Mei H, Yin Z, Liu J, Sun H, Han J. Chin. J. Chem. 2019; 37: 292
    • 1k Lin J, Song R.-J, Hu M, Li J.-H. Chem. Rec. 2019; 19: 440
    • 1l Ping Y, Li Y, Zhu J, Kong W. Angew. Chem. Int. Ed. 2019; 58: 1562
    • 1m Wu Y.-C, Xiao Y.-T, Yang Y.-Z, Song R.-J, Li J.-H. ChemCatChem 2020; 12: 5312
    • 1n Derosa J, Apolinar O, Kang T, Tran VT, Engle KM. Chem. Sci. 2020; 11: 4287
    • 1o Dhungana RK, Sapkota RR, Niroula D, Giri R. Chem. Sci. 2020; 11: 9757
    • 1p Diccianni J, Lin Q, Diao T. Acc. Chem. Res. 2020; 53: 906
    • 1q Li Y, Wu D, Cheng H.-G, Yin G. Angew. Chem. Int. Ed. 2020; 59: 7990
    • 1r Luo Y.-C, Xu C, Zhang X. Chin. J. Chem. 2020; 38: 1371
    • 1s Qi X, Diao T. ACS Catal. 2020; 10: 8542
    • 1t Lu F.-D, He G.-F, Lu L.-Q, Xiao W.-J. Green Chem. 2021; 23: 5379
    • 1u Wickham LM, Giri R. Acc. Chem. Res. 2021; 54: 3415
    • 1v Wang Y, Bao Y, Tang M, Ye Z, Yuan Z, Zhu G. Chem. Commun. 2022; 58: 3847
    • 1w Luo M.-J, Xiao Q, Li J.-H. Chem. Soc. Rev. 2022; 51: 7206
    • 2a Francke R, Little RD. Chem. Soc. Rev. 2014; 43: 2492
    • 2b Yan M, Kawamata Y, Baran PS. Chem. Rev. 2017; 117: 13230
    • 2c Sauer GS, Lin S. ACS Catal. 2018; 8: 5175
    • 2d Xiong P, Xu H.-C. Acc. Chem. Res. 2019; 52: 3339
    • 2e Röckl JL, Pollok D, Franke R, Waldvogel SR. Acc. Chem. Res. 2020; 53: 45
    • 2f Siu JC, Fu N, Lin S. Acc. Chem. Res. 2020; 53: 547
    • 2g Wang P, Gao X, Huang P, Lei A. ChemCatChem 2020; 12: 27
    • 3a Moeller KD. Chem. Rev. 2018; 118: 4817
    • 3b Tang S, Liu Y, Lei A. Chem 2018; 4: 27
    • 3c Wiebe A, Gieshoff T, Möhle S, Rodrigo E, Zirbes M, Waldvogel SR. Angew. Chem. Int. Ed. 2018; 57: 5594
    • 3d Meyer TH, Choi I, Tian C, Ackermann L. Chem 2020; 6: 2484
    • 3e Zhang B, Gao Y, Hioki Y, Oderinde MS, Qiao JX, Rodriguez KX, Zhang H.-J, Kawamata Y, Baran PS. Nature 2022; 606: 313
    • 4a Nguyen BH, Redden A, Moeller KD. Green Chem. 2014; 16: 69
    • 4b Schultz DM, Yoon TP. Science 2014; 343: 1239176
    • 4c Horn EJ, Rosen BR, Baran PS. ACS Cent. Sci. 2016; 2: 302
    • 5a Yoshida J.-i, Kataoka K, Horcajada R, Nagaki A. Chem. Rev. 2008; 108: 2265
    • 5b Sperry JB, Wright DL. Chem. Soc. Rev. 2006; 35: 605
    • 5c Moeller KD. Tetrahedron 2000; 56: 9527
    • 6a Solladie G, Frechou C, Demailly G, Greck C. J. Org. Chem. 1986; 51: 1912
    • 6b Oida S, Tajima Y, Konosu T, Nakamura Y, Somada A, Tanaka T, Habuki S, Harasaki T, Kamai Y, Fukuoka T, Ohya S, Yasuda H. Chem. Pharm. Bull. 2000; 48: 694
    • 6c Teall M, Oakley P, Harrison T, Shaw D, Kay E, Elliott J, Gerhard U, Castro JL, Shearman M, Ball RG, Tsou NN. Bioorg. Med. Chem. Lett. 2005; 15: 2685
    • 6d Meadows DC, Gervay-Hague J. Med. Res. Rev. 2006; 26: 793
    • 6e Alba A.-NR, Companyó X, Rios R. Chem. Soc. Rev. 2010; 39: 2018
    • 6f Nielsen M, Jacobsen CB, Holub N, Paixão MW, Jørgensen KA. Angew. Chem. Int. Ed. 2010; 49: 2668
    • 6g Duan L, Qiao J, Sun Y, Qiu Y. Adv. Mater. 2011; 23: 1137
    • 6h Nicolaou KC, Hale CR. H, Nilewski C, Ioannidou HA. Chem. Soc. Rev. 2012; 41: 5185
    • 6i Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chem. Soc. Rev. 2018; 47: 1307
    • 6j Scott KA, Njardarson JT. Top. Curr. Chem. 2018; 376: 5
  • 7 Luo M.-J, Liu B, Li Y, Hu M, Li J.-H. Adv. Synth. Catal. 2019; 361: 1538
  • 8 Yuan Y, Cao Y, Lin Y, Li Y, Huang Z, Lei A. ACS Catal. 2018; 8: 10871
  • 9 Ye Z.-P, Gao J, Duan X.-Y, Guan J.-P, Liu F, Chen K, Xiao J.-A, Xiang H.-Y, Yang H. Chem. Commun. 2021; 57: 8969
  • 10 Zhou P, Niu K, Song H, Liu Y, Wang Q. Green Chem. 2022; 24: 5760
  • 11 Yu Y, Jiang Y.-M, Zhu X.-B, Lin Y.-Y, Yuan Y, Ye K.-Y. Org. Chem. Front. 2022; 9: 5586
  • 12 Sun L, Wang L, Alhumade H, Yi H, Cai H, Lei A. Org. Lett. 2021; 23: 7724
    • 13a Satzinger G. Drug News Perspect. 2001; 14: 197
    • 13b Mader P, Kattner L. J. Med. Chem. 2020; 63: 14243
    • 13c Han Y, Xing K, Zhang J, Tong T, Shi Y, Cao H, Yu H, Zhang Y, Liu D, Zhao L. Eur. J. Med. Chem. 2021; 209: 112885
    • 13d Wan J.-L, Huang J.-M. Org. Lett. 2022; 24: 8914
  • 14 Yu Y, Zhu X.-B, Yuan Y, Ye K.-Y. Chem. Sci. 2022; 13: 13851
    • 15a Jeschke P. ChemBioChem 2004; 5: 570
    • 15b Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 15c Yamazaki T, Taguchi T, Ojima I. Unique Properties of Fluorine and their Relevance to Medicinal Chemistry and Chemical Biology. In Fluorine in Medicinal Chemistry and Chemical Biology. Ojima I. Wiley-Blackwell; Chichester: 2009: 1
  • 16 Zhang L, Zhang G, Wang P, Li Y, Lei A. Org. Lett. 2018; 20: 7396
    • 17a Sun X, Ma H.-X, Mei T.-S, Fang P, Hu Y. Org. Lett. 2019; 21: 3167
    • 17b Wan C, Song R.-J, Li J.-H. Org. Lett. 2019; 21: 2800
    • 17c Zhang T.-T, Luo M.-J, Li Y, Song R.-J, Li J.-H. Org. Lett. 2020; 22: 7250
    • 18a Harvey RG. Polycyclic Aromatic Hydrocarbons . Wiley-VCH; Weinheim: 1997
    • 18b Hopf H. Classics in Hydrocarbon Chemistry . Wiley-VCH; Weinheim: 2000
    • 18c Segawa Y, Ito H, Itami K. Nat. Rev. Mater. 2016; 1: 15002
    • 18d Yan J, Chen J, Zhang S, Hu JH, Huang L, Li XS. J. Med. Chem. 2016; 59: 5264
    • 18e Singh AK, Raj V, Saha S. Eur. J. Med. Chem. 2017; 142: 244
    • 18f Kaur H, Singh J, Narasimhan B. BMC Chem. 2019; 13: 65
    • 18g Qin J.-H, Luo M.-J, An D.-L, Li J.-H. Angew. Chem. Int. Ed. 2021; 60: 1861
  • 19 Ke J, Liu W, Zhu X, Tan X, He C. Angew. Chem. Int. Ed. 2021; 60: 8744
  • 20 Siu JC, Sauer GS, Saha A, Macey RL, Fu N, Chauviré T, Lancaster KM, Lin S. J. Am. Chem. Soc. 2018; 140: 12511
  • 21 Fu N, Sauer GS, Saha A, Loo A, Lin S. Science 2017; 357: 575
  • 22 Ye K.-Y, Pombar G, Fu N, Sauer GS, Keresztes I, Lin S. J. Am. Chem. Soc. 2018; 140: 2438
  • 23 Siu JC, Parry JB, Lin S. J. Am. Chem. Soc. 2019; 141: 2825
  • 24 Novaes LF. T, Wang Y, Liu J, Riart-Ferrer X, Lee W.-CC, Fu N, Ho JS. K, Zhang XP, Lin S. ACS Catal. 2022; 12: 14106
  • 25 Zheng M.-W, Yuan X, Cui Y.-S, Qiu J.-K, Li G, Guo K. Org. Lett. 2018; 20: 7784
  • 26 Zou Z, Zhang W, Wang Y, Kong L, Karotsis G, Wang Y, Pan Y. Org. Lett. 2019; 21: 1857
  • 27 Lan J, Lin K, Zhang X, Zhu T. Green Chem. 2022; 24: 6138
  • 28 Seastram AC, Hareram MD, Knight TM. B, Morrill LC. Chem. Commun. 2022; 58: 8658