Synthesis 2023; 55(12): 1922-1928
DOI: 10.1055/a-2039-6271
paper
Special Issue Honoring Prof. Guoqiang Lin's Contributions to Organic Chemistry

Synthesis of 1,1-Disubstituted Indenes via Palladium-Catalyzed Cross-Coupling of ortho-Alkenyl Bromobenzenes and α-Aryl-α-diazoesters

Xiao-Jiao Feng
,
Jian-Guo Fu
,
Qian Zhao
,
Yu-Han Lu
,
Shu-Sheng Zhang
,
Chen-Guo Feng
This work was supported by the National Natural Science Foundation of China (22271195), the Science and Technology Commission of Shanghai Municipality (21ZR1482100 and 22ZR1458900), the Shanghai Municipal Education Commission (2019-01-07-00-10-E00072), Shanghai Science and Technology Development Fund from Central Leading Local Government (YDZX20223100001004), and Shanghai Municipal Health Commission/Shanghai Municipal Administration of Traditional Chinese Medicine (ZY(2021–2023)-0501).


Dedication to Professor Guo-Qiang Lin on the Occasion of his 80th Birthday

Abstract

Palladium-catalyzed cross-coupling of ortho-alkenyl bromobenzenes and α-aryl-α-diazoesters was realized. The reactions proceeded in moderate to excellent yields with broad substrate scope, providing a straightforward method for the synthesis of 1,1-disubstituted indenes. The reaction is thought to undergo a tandem alkenyl C–H activation/carbene insertion sequence, in which a C,C-pallada(II)cycle is the key intermediate.

Supporting Information



Publication History

Received: 20 January 2023

Accepted after revision: 21 February 2023

Accepted Manuscript online:
21 February 2023

Article published online:
29 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Pluskota R, Koba M. Mini-Rev. Med. Chem. 2018; 18: 1321
    • 1b Prasher P, Sharma M. ChemistrySelect 2021; 6: 2658
  • 2 Li Y.-F. Chem. Asian J. 2013; 8: 2316
    • 3a Rogers JS, Lachicotte RJ, Bazan GC. Organometallics 1999; 18: 3976
    • 3b Fischer M, Oswald T, Ebert H, Schmidtmann M, Beckhaus R. Organometallics 2018; 37: 415
    • 4a Gabriele B, Mancuso R, Veltri L. Chem. Eur. J. 2016; 22: 5056
    • 4b He Q, Yin Z, Chen H, Zhang Z, Wang X, Yue G. Prog. Chem. 2016; 28: 801
    • 4c Rinaldi A, Scarpi D, Occhiato EG. Eur. J. Org. Chem. 2019; 7401
    • 4d Shi CX, Feng C.-G, Chen Y.-L, Zhang S.-S, Lin G.-Q. Chin. J. Org. Chem. 2020; 40: 817
    • 5a Hitce J, Baudoin O. Adv. Synth. Catal. 2007; 349: 2054
    • 5b Mazuela J, Banerjee D, Bäckvall JE. J. Am. Chem. Soc. 2015; 137: 9559
    • 5c Barroso R, Paraja M, Cabal M.-P, Valdés C. Org. Lett. 2017; 19: 4086
    • 5d Liu X.-W, Li S.-S, Dai D.-T, Zhao M, Shan C.-C, Xu Y.-H, Loh T.-P. Org. Lett. 2019; 21: 3696
    • 6a Sanjuán AM, Virumbrales C, García-García P, Fernández-Rodríguez MA, Sanz R. Org. Lett. 2016; 18: 1072
    • 6b Nahide PD, Jiménez-Halla JO. C, Wrobel K, Solorio-Alvarado CR, Alvarado RO, Yahuaca-Juárez B. Org. Biomol. Chem. 2018; 16: 7330
  • 7 Egi M, Shimizu K, Kamiya M, Ota Y, Akai S. Chem. Commun. 2015; 51: 380
    • 8a Fang X, Yu P, Willems S, Morandi B. Helv. Chim. Acta 2019; 102: e1900059
    • 8b Zhang T, Luan Y.-X, Zheng S.-J, Peng Q, Ye M. Angew. Chem. Int. Ed. 2020; 59: 7439
  • 9 Wang M, Bai D, Kong L, Liu B, Li X. Org. Lett. 2018; 20: 7775
    • 10a Zhang D, Liu Z, Yum EK, Larock RC. J. Org. Chem. 2007; 72: 251
    • 10b Chidipudi SR, Khan I, Lam HW. Angew. Chem. Int. Ed. 2012; 51: 12115
    • 10c Jia X, Petrone DA, Lautens M. Angew. Chem. Int. Ed. 2012; 51: 9870
    • 10d Dooley JD, Chidipudi SR, Lam HW. J. Am. Chem. Soc. 2013; 135: 10829
    • 10e Ramesh K, Satyanarayana G. J. Org. Chem. 2017; 82: 4254
  • 11 García-López J.-A, Saura-Llamas I. Eur. J. Inorg. Chem. 2021; 3655
  • 12 Rahím A, Feng J, Gu Z. Chin. J. Chem. 2019; 37: 929
  • 13 Hu T.-J, Zhang G, Chen Y.-H, Feng C.-G, Lin G.-Q. J. Am. Chem. Soc. 2016; 138: 2897
    • 14a Hu T.-J, Li M.-Y, Zhao Q, Feng C.-G, Lin G.-Q. Angew. Chem. Int. Ed. 2018; 57: 5871
    • 14b Xue Z.-J, Li M.-Y, Zhu B.-B, He Z.-T, Feng C.-G, Lin G.-Q. Adv. Synth. Catal. 2021; 363: 2089
  • 15 Wei D, Hu T.-J, Feng C.-G, Lin G.-Q. Chin. J. Chem. 2018; 36: 743
  • 16 Li M.-Y, Han P, Hu T.-J, Wei D, Zhang G, Qin A, Feng C.-G, Tang BZ, Lin G.-Q. Iscience 2020; 23: 100966
  • 17 Wei D, Li M.-Y, Zhu B.-B, Yang X.-D, Zhang F, Feng C.-G, Lin G.-Q. Angew. Chem. Int. Ed. 2019; 58: 16543
  • 18 Zhu B.-B, Ye W.-B, He Z.-T, Zhang S.-S, Feng C.-G, Lin G.-Q. ACS Catal. 2021; 11: 12123
  • 19 Zhang G, Feng X.-J, Li M.-Y, Ji X.-M, Lin G.-Q, Feng C.-G. Org. Biomol. Chem. 2022; 20: 5383
  • 20 Xu S, Chen R, Fu Z, Zhou Q, Zhang Y, Wang J. ACS Catal. 2017; 7: 1993
  • 21 Wakioka M, Nakamura Y, Montgomery M, Ozawa F. Organometallics 2015; 34: 198
  • 22 CCDC 2226861 contains the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
    • 23a Wang L, Carrow BP. ACS Catal. 2019; 9: 6821
    • 23b Lapointe D, Fagnou K. Chem. Lett. 2010; 39: 1118
    • 23c Lafrance M, Rowley CN, Woo TK, Fagnou K. J. Am. Chem. Soc. 2006; 128: 8754