Synthesis 2023; 55(10): 1467-1486
DOI: 10.1055/a-2043-3973
review

Catalyst-Free Photoinduced C–C Bond Formations

,
,
Prasenjit Mal


Abstract

Use of sustainable energy sources in synthetic organic chemistry has become one of the most popular research topics due to environmental pollution and global warming. In this review, we discuss photocatalyst-free and transition-metal-free light-induced reactions for the construction of carbon–carbon (C–C) bonds. The reaction systems discussed here are C–C bond formation via carbene intermediates, radical intermediates, and miscellaneous reactions via cyclization.

1 Introduction

2 C–C Bond Formation via Carbene Intermediates

3 C–C Bond Formation via Radical Intermediates

4 Miscellaneous C–C Bond Formation via Cyclization

5 Conclusion



Publication History

Received: 07 December 2022

Accepted after revision: 27 February 2023

Accepted Manuscript online:
27 February 2023

Article published online:
29 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Romero NA, Nicewicz DA. Chem. Rev. 2016; 116: 10075
  • 2 Narayanam JM. R, Stephenson CR. J. Chem. Soc. Rev. 2011; 40: 102
  • 3 Yoon TP, Ischay MA, Du J. Nat. Chem. 2010; 2: 527
  • 4 Marzo L, Pagire SK, Reiser O, König B. Angew. Chem. Int. Ed. 2018; 57: 10034
  • 5 Zuin VG, Eilks I, Elschami M, Kümmerer K. Green Chem. 2021; 23: 1594
    • 6a Wang Z. In Comprehensive Organic Name Reactions and Reagents. Wiley; Hoboken: 2010: 2062
    • 6b Armesto D, Ortiz MJ, Agarrabeitia AR, Martín-Fontecha M. Org. Lett. 2005; 7: 2687
    • 7a Yamada S, Iwaoka A, Fujita Y, Tsuzuki S. Org. Lett. 2013; 15: 5994
    • 7b Singhal N, Koner AL, Mal P, Venugopalan P, Nau WM, Moorthy JN. J. Am. Chem. Soc. 2005; 127: 14375
  • 8 D’Auria M. Photochem. Photobiol. Sci. 2019; 18: 2297
    • 9a Gadde K, De Vos D, Maes BU. W. Synthesis 2023; 55: 193
    • 9b Vanderghinste J, Das S. Synthesis 2022; 54: 3383
    • 9c Sakakibara Y, Murakami K. ACS Catal. 2022; 12: 1857
    • 9d Chan AY, Perry IB, Bissonnette NB, Buksh BF, Edwards GA, Frye LI, Garry OL, Lavagnino MN, Li BX, Liang Y, Mao E, Millet A, Oakley JV, Reed NL, Sakai HA, Seath CP, MacMillan DW. C. Chem. Rev. 2022; 122: 1485
    • 9e Tan H, Li H, Ji W, Wang L, Wang L. Angew. Chem. Int. Ed. 2015; 54: 8374
  • 10 Prier CK, Rankic DA, MacMillan DW. C. Chem. Rev. 2013; 113: 5322
    • 11a Ardila-Fierro KJ, Hernández JG. ChemSusChem 2021; 14: 2145
    • 11b Song J, Han B. Natl. Sci. Rev. 2014; 2: 255
    • 12a Holmberg-Douglas N, Nicewicz DA. Chem. Rev. 2022; 122: 1925
    • 12b Bose A, Mal P. ARKIVOC 2021; (vii): 79
    • 12c Sau S, Mal P. J. Org. Chem. 2022; 87: 14565
    • 12d Pramanik M, Choudhuri K, Mathuri A, Mal P. Chem. Commun. 2020; 56: 10211
    • 12e Pramanik M, Mathuri A, Sau S, Das M, Mal P. Org. Lett. 2021; 23: 8088
  • 13 Fan X.-Z, Rong J.-W, Wu H.-L, Zhou Q, Deng H.-P, Tan JD, Xue C.-W, Wu L.-Z, Tao H.-R, Wu J. Angew. Chem. Int. Ed. 2018; 57: 8514
    • 15a MacKenzie IA, Wang L, Onuska NP. R, Williams OF, Begam K, Moran AM, Dunietz BD, Nicewicz DA. Nature 2020; 580: 76
    • 15b Mandal S, Bhuyan S, Jana S, Hossain J, Chhetri K, Roy BG. Green Chem. 2021; 23: 5049
  • 16 Tlili A, Lakhdar S. Angew. Chem. Int. Ed. 2021; 60: 19526
  • 17 Patel RI, Sharma A, Sharma S, Sharma A. Org. Chem. Front. 2021; 8: 1694
    • 18a Bera SK, Boruah PJ, Parida SS, Paul AK, Mal P. J. Org. Chem. 2021; 86: 9587
    • 18b Yuan Y.-q, Majumder S, Yang M.-h, Guo S.-r. Tetrahedron Lett. 2020; 61: 151506
    • 18c Saikia BS, Deb ML, Baruah PK. Environ. Chem. Lett. 2022; 20: 109
    • 18d Saikia BS, Borpatra PJ, Rahman I, Deb ML, Baruah PK. New J. Chem. 2022; 46: 16523
  • 20 Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
  • 21 Crisenza GE. M, Mazzarella D, Melchiorre P. J. Am. Chem. Soc. 2020; 142: 5461
    • 22a Qin C, Boyarskikh V, Hansen JH, Hardcastle KI, Musaev DG, Davies HM. L. J. Am. Chem. Soc. 2011; 133: 19198
    • 22b Zhang Y, Yao Y, He L, Liu Y, Shi L. Adv. Synth. Catal. 2017; 359: 2754
    • 22c Arredondo V, Hiew SC, Gutman ES, Premachandra ID. U. A, Van Vranken DL. Angew. Chem. Int. Ed. 2017; 56: 4156
    • 22d Liao K, Negretti S, Musaev DG, Bacsa J, Davies HM. L. Nature 2016; 533: 230
  • 23 Xiang Y, Wang C, Ding Q, Peng Y. Adv. Synth. Catal. 2019; 361: 919
    • 24a Davies HM. L, Grazini MV. A, Aouad E. Org. Lett. 2001; 3: 1475
    • 24b Rodríguez A, Nomen M, Spur BW, Godfroid J.-J. Eur. J. Org. Chem. 1999; 2655
  • 25 Yang Z, Stivanin ML, Jurberg ID, Koenigs RM. Chem. Soc. Rev. 2020; 49: 6833
  • 26 Jurberg ID, Davies HM. L. Chem. Sci. 2018; 9: 5112
  • 27 Xiao T, Mei M, He Y, Zhou L. Chem. Commun. 2018; 54: 8865
  • 28 Guo Y, Nguyen TV, Koenigs RM. Org. Lett. 2019; 21: 8814
  • 29 Hommelsheim R, Guo Y, Yang Z, Empel C, Koenigs RM. Angew. Chem. Int. Ed. 2019; 58: 1203
  • 30 Li F, He F, Koenigs RM. Synthesis 2019; 51: 4348
  • 31 Zhang Z, Yadagiri D, Gevorgyan V. Chem. Sci. 2019; 10: 8399
  • 32 Zhang X, Du C, Zhang H, Li X.-C, Wang Y.-L, Niu J.-L, Song M.-P. Synthesis 2019; 51: 889
  • 33 Jana S, Li F, Empel C, Verspeek D, Aseeva P, Koenigs RM. Chem. Eur. J. 2020; 26: 2586
  • 34 da Silva AF, Afonso MA. S, Cormanich RA, Jurberg ID. Chem. Eur. J. 2020; 26: 5648
  • 35 Barluenga J, Tomás-Gamasa M, Aznar F, Valdés C. Nat. Chem. 2009; 1: 494
  • 36 Li W, Yang Y, Tang Z, Yu X, Lin J, Jin Y. J. Org. Chem. 2022; 87: 13352
  • 37 Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 38 Cordovilla C, Bartolomé C, Martínez-Ilarduya JM, Espinet P. ACS Catal. 2015; 5: 3040
  • 39 Sambiagio C, Marsden SP, Blacker AJ, McGowan PC. Chem. Soc. Rev. 2014; 43: 3525
  • 40 Sun C.-L, Li H, Yu D.-G, Yu M, Zhou X, Lu X.-Y, Huang K, Zheng S.-F, Li B.-J, Shi Z.-J. Nat. Chem. 2010; 2: 1044
  • 41 Ashenhurst JA. Chem. Soc. Rev. 2010; 39: 540
  • 42 Kloss F, Neuwirth T, Haensch VG, Hertweck C. Angew. Chem. Int. Ed. 2018; 57: 14476
  • 43 Jana S, Pei C, Bahukhandi SB, Koenigs RM. Chem Catal. 2021; 1: 467
  • 44 Hsieh H.-W, Coley CW, Baumgartner LM, Jensen KF, Robinson RI. Org. Process Res. Dev. 2018; 22: 542
  • 45 Gu L, Jin C, Liu J. Green Chem. 2015; 17: 3733
  • 46 Rueping M, Zoller J, Fabry DC, Poscharny K, Koenigs RM, Weirich TE, Mayer J. Chem. Eur. J. 2012; 18: 3478
  • 47 Fürst MC. D, Gans E, Böck MJ, Heinrich MR. Chem. Eur. J. 2017; 23: 15312
  • 48 Cheng Y, Li G, Liu Y, Shi Y, Gao G, Wu D, Lan J, You J. J. Am. Chem. Soc. 2016; 138: 4730
  • 49 Aganda KC. C, Kim J, Lee A. Org. Biomol. Chem. 2019; 17: 9698
  • 50 Pan P, Liu S, Lan Y, Zeng H, Li C.-J. Chem. Sci. 2022; 13: 7165
  • 51 Cao D, Ataya M, Chen Z, Zeng H, Peng Y, Khaliullin RZ, Li C.-J. Nat. Commun. 2022; 13: 1805
  • 52 Bartolomeu AA, Silva RC, Brocksom TJ, Noel T, de Oliveira KT. J. Org. Chem. 2019; 84: 10459
  • 53 Sivendran N, Belitz F, Sowa Prendes D, Manu Martínez Á, Schmid R, Gooßen LJ. Chem. Eur. J. 2022; 28: e202103669
    • 54a Crespi S, Protti S, Fagnoni M. J. Org. Chem. 2016; 81: 9612
    • 54b Qiu D, Lian C, Mao J, Fagnoni M, Protti S. J. Org. Chem. 2020; 85: 12813
  • 55 Dossena A, Sampaolesi S, Palmieri A, Protti S, Fagnoni M. J. Org. Chem. 2017; 82: 10687
  • 56 Onuigbo L, Raviola C, Di Fonzo A, Protti S, Fagnoni M. Eur. J. Org. Chem. 2018; 5297
  • 57 Zhang HH, Yu S. Org. Lett. 2019; 21: 3711
  • 58 Chidley T, Jameel I, Rizwan S, Peixoto PA, Pouysegu L, Quideau S, Hopkins WS, Murphy GK. Angew. Chem. Int. Ed. 2019; 58: 16959
  • 59 Liang K, Li N, Zhang Y, Li T, Xia C. Chem. Sci. 2019; 10: 3049
  • 60 Kosynkin D, Bockman TM, Kochi JK. J. Am. Chem. Soc. 1997; 119: 4846
  • 61 Liu Y, Li H, Chiba S. Org. Lett. 2021; 23: 427
  • 62 Hayashi H, Wang B, Wu X, Teo SJ, Kaga A, Watanabe K, Takita R, Yeow EK. L, Chiba S. Adv. Synth. Catal. 2020; 362: 2223
  • 63 Terlizzi LD, Cola I, Raviola C, Fagnoni M, Protti S. ACS Org. Inorg. Au 2021; 1: 68
  • 64 Li Z, Ma P, Tan Y, Liu Y, Gao M, Zhang Y, Yang B, Huang X, Gao Y, Zhang J. Green Chem. 2020; 22: 646
  • 65 Xu C, Shen F.-Q, Feng G, Jin J. Org. Lett. 2021; 23: 3913
  • 66 Kaur J, Shahin A, Barham JP. Org. Lett. 2021; 23: 2002
  • 67 Diesendorf N, Wenisch P, Oppl J, Heinrich MR. Org. Lett. 2023; 25: 76
  • 68 Li Y, Liang X, Niu K, Gu J, Liu F, Xia Q, Wang Q, Zhang W. Org. Lett. 2022; 24: 5918
  • 69 Wang X, Shao X, Cao Z, Wu X, Zhu C. Adv. Synth. Catal. 2022; 364: 1200
  • 70 Ojima I, Tzamarioudaki M, Li Z, Donovan RJ. Chem. Rev. 1996; 96: 635
  • 71 Chen H, Yu S. Org. Biomol. Chem. 2020; 18: 4519
  • 72 Guerra WD, Rossi RA, Pierini AB, Barolo SM. J. Org. Chem. 2016; 81: 4965
    • 73a Frontier AJ, Collison C. Tetrahedron 2005; 61: 7577
    • 73b Dreger A, Wonner P, Engelage E, Walter SM, Stoll R, Huber SM. Chem. Commun. 2019; 55: 8262
  • 74 Cai S, Xiao Z, Ou J, Shi Y, Gao S. Org. Chem. Front. 2016; 3: 354
  • 75 Lvov AG, Shirinian VZ, Zakharov AV, Krayushkin MM, Kachala VV, Zavarzin IV. J. Org. Chem. 2015; 80: 11491
  • 76 Fan J, Wang T, Li C, Wang R, Lei X, Liang Y, Zhang Z. Org. Lett. 2017; 19: 5984
  • 77 Zhang J, Zhang X, Wang T, Yao X, Wang P, Wang P, Jing S, Liang Y, Zhang Z. J. Org. Chem. 2017; 82: 12097
  • 78 Kang Y, Zhang W, Wang T, Liang Y, Zhang Z. J. Org. Chem. 2019; 84: 12387
  • 79 Fan J, Zhang W, Gao W, Wang T, Duan WL, Liang Y, Zhang Z. Org. Lett. 2019; 21: 9183
  • 80 Kang Y, Wang T, Liang Y, Zhang Y, Wang R, Zhang Z. RSC Adv. 2017; 7: 44333
  • 81 Romero IE, Lantaño B, Postigo A, Bonesi SM. J. Org. Chem. 2022; 87: 13439
  • 82 Di Sabato A, D’Acunzo F, Filippini D, Vetica F, Brasiello A, Corinti D, Bodo E, Michenzi C, Panzetta E, Gentili P. J. Org. Chem. 2022; 87: 13803