Synlett
DOI: 10.1055/a-2256-2980
synpacts

Catalytic Chain Transfer in Crosslinking Photopolymerizations

Nicholas R. Bagnall
a   Department of Chemistry & Biochemistry, University of Denver, Seeley G Mudd Science Building, 2101 E Wesley Ave Denver, CO 80210, USA
,
Meredith H. Jones
a   Department of Chemistry & Biochemistry, University of Denver, Seeley G Mudd Science Building, 2101 E Wesley Ave Denver, CO 80210, USA
,
Brian R. Donovan
b   Dynosaur, LLC, 5120 Clay St., Denver, CO 80221, USA
,
a   Department of Chemistry & Biochemistry, University of Denver, Seeley G Mudd Science Building, 2101 E Wesley Ave Denver, CO 80210, USA
› Author Affiliations
This material is based upon work supported by the National Science Foundation under grant no. CHE-2240141, a PROF grant from the University of Denver (DU), and startup funds from the Department of Chemistry & Biochemistry at DU.


This paper is dedicated to Dr. Matthew McBride

Abstract

Presented here is a detailed account of the development and implementation of macrocyclic cobaloxime complexes as sulfur-free, catalytic chain transfer agents (CTAs) in crosslinking photopolymerizations. Although much of this review is dedicated to understanding the fundamentals of catalytic chain transfer (CCT) in photopolymerizations, its impact on network topology and resultant mechanical properties, future goals of applying this technology to multimaterial 3D printing are also discussed. It is our long-term ambition for catalytic, sulfur-free CTAs to supplant existing consumptive, sulfur-based agents to provide new, unexplored, and not currently possible to fabricate photopolymeric materials with a specific eye towards application in dentistry, additive manufacturing, and responsive materials.

1 Introduction

2 History of Catalytic Chain Transfer (CCT)

3 Understanding Catalyst Purity and Chain Transfer Activity

4 Evidencing CCT in a Crosslinking Photopolymerization

5 Comparing Cobalt(II)-Catalysts to Other Relevant CTAs

6 Performance of Cobalt(II)-Catalysts in Commercial Resins

7 Limitations of Approach and Looking Forward

Supporting Information



Publication History

Received: 06 December 2023

Accepted after revision: 29 January 2024

Accepted Manuscript online:
29 January 2024

Article published online:
05 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Worrell BT, McBride MK, Lyon GB, Cox LM, Wang C, Mavila S, Lim C.-H, Coley HM, Musgrave CB, Ding Y, Bowman CN. Nat. Commun. 2018; 9: 2804
  • 2 Worrell BT, Mavila S, Wang C, Kontour TM, Lim C.-H, McBride MK, Musgrave CB, Shoemaker R, Bowman CN. Polym. Chem. 2018; 9: 4523
  • 3 Brown TE, Carberry BJ, Worrell BT, Dudaryeva OY, McBride MK, Bowman CN, Anseth KS. Biomaterials 2018; 178: 496
  • 4 Schwartz JJ, Boydston AJ. Nat. Commun. 2019; 10: 791
  • 5 Tibbitt MW, Kloxin AM, Sawicki LA, Anseth KS. Macromolecules 2013; 46: 2785
  • 6 Lowe A, Bowman C. Thiol-X Chemistries in Polymer and Materials Science . Royal Society of Chemistry; Cambridge: 2013
  • 7 Gridnev A. J. Polym. Sci., Part A: Polym. Chem. 2000; 38: 1753
  • 8 Duval-Terrié C, Lebrun L. J. Chem. Educ. 2006; 83: 443
  • 9 Gridnev AA, Ittel SD. Chem. Rev. 2001; 101: 3611
  • 10 Haddleton DM, Maloney DR, Suddaby Adam Clarke KG, Richards SN. Polymer 1997; 38: 6207
  • 11 Heuts JP. A, Roberts GE, Biasutti JD. Aust. J. Chem. 2002; 55: 381
  • 12 Slavin S, McEwan K, Haddleton DM. In Polymer Science: A Comprehensive Reference, 10 Volume Set . Elsevier; Amsterdam: 2012: 249
  • 13 Gridnev AA, Ittel SD, Fryd M, Wayland BB. Organometallics 1996; 15: 222
  • 14 Lacy DC, Roberts GM, Peters JC. J. Am. Chem. Soc. 2015; 137: 4860
  • 15 Heuts JP. A, Smeets NM. B. Polym. Chem. 2011; 2: 2407
  • 16 Kurmaz SV, Bubnova ML, Perepelitsina EO, Estrina GA. e-Polymers 2004; 4
  • 17 Kurmaz SV, Perepelitsina EO, Bubnova ML, Estrina GA. Mendeleev Commun. 2004; 14: 125
  • 18 Kurmaz SV, Perepelitsina EO. Russ. Chem. Bull. 2006; 55: 835
  • 19 Guan Z. J. Am. Chem. Soc. 2002; 124: 5616
  • 20 McEwan KA, Haddleton DM. Polym. Chem. 2011; 2: 1992
  • 21 Cramer NB, Bowman CN. J. Polym. Sci., Part A: Polym. Chem. 2001; 39: 3311
  • 22 Gorsche C, Griesser M, Gescheidt G, Moszner N, Liska R. Macromolecules 2014; 47: 7327
  • 23 Ligon SC, Seidler K, Gorsche C, Griesser M, Moszner N, Liska R. J. Polym. Sci., Part A: Polym. Chem. 2016; 54: 394
  • 24 Seidler K, Griesser M, Kury M, Harikrishna R, Dorfinger P, Koch T, Svirkova A, Marchetti-Deschmann M, Stampfl J, Moszner N, Gorsche C, Liska R. Angew. Chem. Int. Ed. 2018; 57: 9165
  • 25 Peer G, Eibel A, Gorsche C, Catel Y, Gescheidt G, Moszner N, Liska R. Macromolecules 2019; 52: 2691
  • 26 Bagnall NR, Jones MH, Jernigan GC, Routt C, Dar LC, Worrell BT. J. Am. Chem. Soc. 2023; 145: 14202
  • 27 Enikolopyan NS, Smirnov BR, Ponomarev GV, Belgovskii IM. J. Polym. Sci., Polym. Chem. Ed. 1981; 19: 879
  • 28 Gridnev AA. Polym. Sci. (USSR) 1989; 31: 2369
  • 29 Jameson DL, Grzybowski JJ, Hammels DE, Castellano RK, Hoke ME, Freed K, Basquill S, Mendel A, Shoemaker WJ. J. Chem. Educ. 1998; 75: 447
  • 30 Adzima BJ, Tao Y, Kloxin CJ, DeForest CA, Anseth KS, Bowman CN. Nat. Chem. 2011; 3: 256
  • 31 Janowicz A. US patent 4,694,054, 1987
  • 32 Janowicz A. US patent 4,886,861, 1989
  • 33 Haddleton DM, Maloney DR, Suddaby KG, Muir AV. G, Richards SN. Macromol. Symp. 1996; 111: 37
  • 34 Bakac A, Espenson JH. J. Am. Chem. Soc. 1984; 106: 5197
  • 35 Marchaj A, Bakac A, Espenson JH. Inorg. Chem. 1992; 31: 4860
  • 36 Suddaby KG, Haddleton DM, Hastings JJ, Richards SN, O’Donnell JP. Macromolecules 1996; 29: 8083
  • 37 Sanayei RA, O’driscoll KF. J. Macromol. Sci., Part A: Chem. 1989; 26: 1137
  • 38 Heuts JP. A, Forster DJ, Davis TP, Yamada B, Yamazoe H, Azukizawa M. Macromolecules 1999; 32: 2511
  • 39 Jian H, Longheng J. CN108530491A
  • 40 Anseth KS, Shastri VR, Langer R. Nat. Biotechnol. 1999; 17: 156
  • 41 Anseth KS, Quick DJ. Macromol. Rapid Commun. 2001; 22: 564
  • 42 Burdick JA, Lovestead TM, Anseth KS. Biomacromolecules 2003; 4: 149
  • 43 Bretti C, Crea F, Foti C, Sammartano S. J. Chem. Eng. Data 2006; 51: 1660
  • 44 Lacík I, Stach M, Kasák P, Semak V, Uhelská L, Chovancová A, Reinhold G, Kilz P, Delaittre G, Charleux B, Chaduc I, D’Agosto F, Lansalot M, Gaborieau M, Castignolles P, Gilbert RG, Szablan Z, Barner-Kowollik C, Hesse P, Buback M. Macromol. Chem. Phys. 2015; 216: 23
  • 45 Schreur-Piet I, Heuts JP. A. Polym. Chem. 2017; 8: 6654
  • 46 Mayo FR. J. Am. Chem. Soc. 1943; 65: 2324
  • 47 Suddaby KG, Maloney DR, Haddleton DM. Macromolecules 1997; 30: 702
  • 48 Heuts JP. A, Davis TP, Russell GT. Macromolecules 1999; 32: 6019
  • 49 Perrier S. Macromolecules 2017; 50: 7433
  • 50 Bradford KG. E, Petit LM, Whitfield R, Anastasaki A, Barner-Kowollik C, Konkolewicz D. J. Am. Chem. Soc. 2021; 143: 17769
  • 51 Schrauzer GN, Sibert JW, Windgassen RJ. J. Am. Chem. Soc. 1968; 90: 6681
  • 52 Demarteau J, Debuigne A, Detrembleur C. Chem. Rev. 2019; 119: 6906
  • 53 Panagiotopoulos A, Ladomenou K, Sun D, Artero V, Coutsolelos AG. Dalton Trans. 2016; 45: 6732
  • 54 Stewart RC, Marzilli LG. J. Am. Chem. Soc. 1978; 100: 817
  • 55 Khan AA, AlKhureif AA, Mohamed BA, Bautista LS. J. Mater. Res. Express 2020; 7: 105307