Synthesis 2025; 57(17): 2551-2563
DOI: 10.1055/a-2457-0229
short review
Boryl Radical Chemistry

Advances in the Light-Promoted Transformations of N-Heterocyclic Carbene Ligated Boryl Radicals

Yang Xie
,
Jun Xuan

We are grateful to the National Natural Science Foundation of China (21971001) and the Distinguished Young Research Project of Anhui Higher Education Institution (2023AH020003) for financial support of the work we performed in this area.


Preview

Abstract

Organoboron compounds are integral to modern life, with extensive applications in synthesis, materials science, medicine, and various other domains closely linked to human endeavors. NHC-BH3, noted for its stability, ease of synthesis, and high reactivity as a boryl radical precursor, has emerged as a key focus in boryl radical chemistry. Recently, the visible-light-induced single electron transfer (SET) and hydrogen atom transfer (HAT) processes have garnered considerable interest, presenting innovative strategies for generating boryl radicals from NHC-BH3. In the context of this review, our focus is on the synthesis of C–B and X–B bonds under visible light irradiation, facilitated by NHC-BH3. Furthermore, we explored the role of NHC-BH3 as a hydrogen donor or halogen atom transfer reagent in the construction of C–C bonds.

1 Introduction

2 Hydroboration

3 Borylation

4 Construction of X–B Bonds (X = N, O, S)

5 Halogen Atom Transfer Reagent and Hydrogen Donor

6 Conclusion



Publication History

Received: 05 September 2024

Accepted after revision: 29 October 2024

Accepted Manuscript online:
29 October 2024

Article published online:
02 December 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany

 
  • References

  • 3 Hušák M, Jegorov A, Rohlíček J, Fitch A, Czernek J, Kobera L, Brus J. Cryst. Growth Des. 2018; 18: 3616
  • 4 Baker SJ, Ding CZ, Akama T, Zhang Y.-K, Hernandez V, Xia Y. Future Med. Chem. 2009; 1: 1275
  • 5 Bush K, Bradford PA. Nat. Rev. Microbiol. 2019; 17: 295
  • 6 Cheng H, Cao X, Zhang S, Zhang K, Cheng Y, Wang J, Zhao J, Zhou L, Liang X, Yoon J. Adv. Mater. 2023; 35: 2207546
  • 7 Grams RJ, Santos WL, Scorei IR, Abad-García A, Rosenblum CA, Bita A, Cerecetto H, Viñas C, Soriano-Ursúa MA. Chem. Rev. 2024; 124: 2441
  • 8 Curran DP, Solovyev A, Brahmi MM, Fensterbank L, Malacria M, Lackte E. Angew. Chem. Int. Ed. 2011; 50: 10294
    • 11a Tian Y.-M, Guo X.-N, Braunschweig H, Radius U, Marder TB. Chem. Rev. 2021; 121: 3561
    • 11b Phang Y, Jin J.-K, Zhang F.-L, Wang Y.-F. Chem. Commun. 2024; 60: 4275
  • 12 Zhou N, Yuan X.-A, Zhao Y, Xie J, Zhu C. Angew. Chem. Int. Ed. 2018; 57: 3990
  • 13 Zhu C, Dong J, Liu X, Gao L, Zhao Y, Xie J, Li S, Zhu C. Angew. Chem. Int. Ed. 2020; 59: 12817
  • 15 Dai W, Geib SJ, Curran DP. J. Am. Chem. Soc. 2020; 142: 6261
  • 16 Li G, Huang G, Sun R, Curran DP, Dai W. Org. Lett. 2021; 23: 4353
  • 17 Xie F, Mao Z, Curran DP, Liang H, Dai W. Angew. Chem. Int. Ed. 2023; 62: e202306846
    • 18a Widness JK, Enny DG, McFarlane-Connelly KS, Miedenbauer MT, Krauss TD, Weix DJ. J. Am. Chem. Soc. 2022; 144: 12229
    • 18b Song S, Qu J, Han P, Hulsey MJ, Zhang G, Wang Y, Wang S, Chen D, Lu J, Yan N. Nat. Commun. 2020; 11: 4899
    • 18c Wu X, Fan X, Xie S, Lin J, Cheng J, Zhang Q, Chen L, Wang Y. Nat. Catal. 2018; 1: 772
    • 19a Kopf S, Bourriquen F, Li W, Neumann H, Junge K, Beller M. Chem. Rev. 2022; 122: 6634
    • 19b Pirali T, Serafini M, Cargnin S, Genazzani AA. J. Med. Chem. 2019; 62: 5276
  • 20 Shi Q, Xu M, Chang R, Ramanathan D, Peñin B, Funes-Ardoiz I, Ye J. Nat. Commun. 2022; 13: 4453
  • 21 Li F.-X, Wang X, Lin J, Lou X, Ouyang J, Hu G, Quan Y. Chem. Sci. 2023; 14: 6341
    • 22a West JG, Huang D, Sorensen EJ. Nat. Commun. 2015; 6: 10093
    • 22b Perry IB, Brewer TF, Sarver PJ, Schultz DM, DiRocco DA, MacMillan DW. C. Nature 2018; 560: 70
  • 23 Wu X, Wang Y, Zhou M.-X, Chen Z, Peng X, Wang Z, Zeng Y.-F. Adv. Synth. Catal. 2023; 365: 3824
  • 24 Jian Y, Wen F, Shang J, Li X, Liu Z, An Y, Wang Y. Org. Chem. Front. 2024; 11: 149
    • 25a Kawamoto T, Morioka T, Noguchi K, Curran DP, Kamimura A. Org. Lett. 2021; 23: 1825
    • 25b Miao Y.-Q, Pan Q.-J, Liu Z, Chen X. New J. Chem. 2022; 46: 19091
    • 25c Liu X, Shen Y, Lu C, Jian Y, Xia S, Gao Z, Zheng Y, An Y, Wang Y. Chem. Commun. 2022; 58: 8380
    • 25d Miao Y.-Q, Li X.-Y, Pan Q.-J, Ma Y, Kang J.-X, Ma Y.-N, Liu Z, Chen X. Green Chem. 2022; 24: 7113
  • 26 Li D.-C, Zeng J.-H, Yang Y.-H, Zhan Z.-P. Org. Chem. Front. 2023; 10: 2075
  • 28 Xu W, Jiang H, Leng J, Ong H.-W, Wu J. Angew. Chem. Int. Ed. 2020; 59: 4009
  • 29 Xia P.-J, Song D, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Xiang H.-Y, Chen X.-Q, Yang H. Angew. Chem. Int. Ed. 2020; 59: 6706
  • 30 Xia P.-J, Ye Z.-P, Hu Y.-Z, Xiao J.-A, Chen K, Xiang H.-Y, Chen X.-Q, Yang H. Org. Lett. 2020; 22: 1742
  • 31 Qi J, Zhang F.-L, Jin J.-K, Zhao Q, Li B, Liu L.-X, Wang Y.-F. Angew. Chem. Int. Ed. 2020; 59: 12876
  • 32 For a review of organocatalytic asymmetric transformations of modified Morita–Baylis–Hillman adducts, see: Liu T.-Y, Xie M, Chen Y.-C. Chem. Soc. Rev. 2012; 41: 4101
  • 33 Zhu C, Gao S, Li W, Zhu C. Chem. Commun. 2020; 56: 15647
  • 34 Zheng H, Lu H, Su C, Yang R, Zhao L, Liu X, Cao H. Chin. J. Chem. 2023; 41: 193
  • 35 Miao Y.-Q, Pan Q.-J, Kang J.-X, Dai X, Liu Z, Chen X. Org. Chem. Front. 2024; 11: 1462
  • 36 Pan Q.-J, Miao Y.-Q, Cao H.-J, Liu Z, Chen X. J. Org. Chem. 2024; 89: 5049
    • 37a Pan X, Vallet A.-L, Schweizer S, Dahbi K, Delpech B, Blanchard N, Graff B, Geib SJ, Curran DP, Lalevée J, Lacôte E. J. Am. Chem. Soc. 2013; 135: 10484
    • 37b Telitel S, Vallet A.-L, Schweizer S, Delpech B, Blanchard N, Morlet-Savary F, Graff B, Curran DP, Robert M, Lacôte E, Lalevée J. J. Am. Chem. Soc. 2013; 135: 16938
  • 38 Zheng H, Xiong H, Su C, Cao H, Yao H, Liu X. RSC Adv. 2022; 12: 470
  • 39 Xie Y, Zhang R, Chen Z.-L, Rong M, He H, Ni S, He X.-K, Xiao W.-J, Xuan J. Adv. Sci. 2024; 11: 2306728
    • 40a Walton JC, Brahmi MM, Fensterbank L, Lacôte E, Malacria M, Chu Q, Ueng S.-H, Solovyev A, Curran DP. J. Am. Chem. Soc. 2010; 132: 2350
    • 40b Ueng S.-H, Solovyev A, Yuan X, Geib SJ, Fensterbank L, Lacôte E, Malacria M, Newcomb M, Walton JC, Curran DP. J. Am. Chem. Soc. 2009; 131: 11256
  • 41 Pan X, Lalevée J, Lacôte E, Curran DP. Adv. Synth. Catal. 2013; 355: 3522
  • 42 Panferova LI, Zubkov MO, Kosobokov MD, Dilman AD. Org. Lett. 2022; 24: 8559
  • 43 Ueng S.-H, Brahmi MM, Derat É, Fensterbank L, Lacôte E, Malacria M, Curran DP. J. Am. Chem. Soc. 2008; 130: 10082
  • 44 Juliá F, Constantin T, Leonori D. Chem. Rev. 2022; 122: 2292
  • 45 Supranovich VI, Levin VV, Struchkova MI, Korlyukov AA, Dilman AD. Org. Lett. 2017; 19: 3215
  • 46 Wan T, Capaldo L, Ravelli D, Vitullo W, de Zwart FJ, Bruin B, Noël T. J. Am. Chem. Soc. 2023; 145: 991
  • 47 Wan T, Ciszewski ŁW, Ravelli D, Capaldo L. Org. Lett. 2024; 26: 5839
  • 48 Capaldo L, Wan T, Mulder R, Djossoua J, Noël T. Chem. Sci. 2024; 15: 14844