Subscribe to RSS
DOI: 10.1055/a-2589-5229
One Carbon at a Time: Unlocking Iterative Carboxylic Acid Homologation
We thank the Engineering and Physical Sciences Research Council (EPSRC, New Investigator Award, EP/V006401/1 to M.S.), the UK Research and Innovation (UKRI, Horizon Europe Guarantee ERC Starting Grant EP/X042766/1 to M.S.), and the University of Nottingham for funding.

Abstract
The development of a direct and iterative protocol for carboxylic acid homologation has constituted a long-standing challenge in synthesis. We recently disclosed an efficient and practical strategy for the homologation of unmodified carboxylic acids, which exploits the visible-light photoredox reactivity of nitroethylene. This Synpacts article aims to provide an overview of the motivation behind the design of the homologation strategy and the key insights of its development.
1 Introduction: Homologation Background and Relevance
2 Development of a Direct, Iterative Carboxylic Acid Homologation
2.1 Identifying an Optimal C2-Radical Acceptor for Carboxylic Acid Homologation
2.2 Visible-Light Decarboxylation of Unmodified Carboxylic Acids
3 Conclusion
Key words
photoredox catalysis - homologation reaction - radical chemistry - iterative - carboxylic acidPublication History
Received: 14 March 2025
Accepted after revision: 16 April 2025
Accepted Manuscript online:
16 April 2025
Article published online:
10 June 2025
© 2025. Thieme. All rights reserved
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
- 1b Name Reactions for Homologations, Part 1 . Li JJ, Corey EJ. Wiley; Hoboken: 2009
- 1c Homologation Reactions: Reagents, Applications, and Mechanisms. Pace V. Wiley-VCH; Weinheim: 2023
- 2 Porcari AR, Ptak RG, Borysko KZ, Breitenbach JM, Drach JC, Townsend LB. J. Med. Chem. 2000; 43: 2457
- 3a Seebach D, Gardiner J. Acc. Chem. Res. 2008; 41: 1366
- 3b
Seebach D,
Matthews JL.
Chem. Commun. 1997; 2015
- 3c Seebach D, Beck AK, Bierbaum DJ. Chem. Biodiversity 2004; 1: 1111
- 4 Chen D, Soh CK, Goh WH, Wang H. J. Med. Chem. 2018; 61: 1552
- 5 Sakurai S, Ogawa N, Suzuki T, Kato K, Ohashi T, Yasuda S, Kato H, Ito Y. Chem. Pharm. Bull. 1996; 44: 765
- 6 Levine SG. J. Am. Chem. Soc. 1958; 80: 6150
- 7a Matteson DS, Ray R. J. Am. Chem. Soc. 1980; 102: 7590
- 7b Matteson DS. Tetrahedron 1989; 45: 1859
- 7c Matteson DS. J. Org. Chem. 2013; 78: 10009
- 7d Kirupakaran S, Korth H.-G, Hirschhäuser C. Synthesis 2018; 50: 2307
- 7e Matteson DS, Collins BS. L, Aggarwal VK, Ciganik E. Org. React. 2021; 105: 427
- 7f
Kinsinger T,
Kazmaier U.
Eur. J. Org. Chem. 2022; 31
- 8a Zabolotna Y, Volochnyuk DM, Ryabukhin SV, Horvath D, Gavrilenko KS, Marcou G, Moroz YS, Oksiuta O, Varnek A. J. Chem. Inf. Model. 2022; 62: 2171
- 8b Mao F, Ni W, Xu X, Wang H, Wang J, Ji M, Li J. Molecules 2016; 21: 75
- 8c Ertl P, Schuhmann T. J. Nat. Prod. 2019; 82: 1258
- 8d Ertl P, Altmann E, McKenna JM. J. Med. Chem. 2020; 63: 8408
- 9a Arndt F, Eistert B. Ber. Dtsch. Chem. Ges. B 1935; 68: 200
- 9b Fuchter MJ. Arndt–Eistert Homologation . In Name Reactions for Homologations Part 1 . Li JJ, Corey EJ. Wiley; Hoboken: 2009: 336-612
- 9c Podlech J, Seebach D. Angew. Chem., Int. Ed. Engl. 1995; 34: 471
- 9d
Podlech J,
Seebach D.
Liebigs Ann. 1995; 1217
- 9e Winum J.-Y, Kamal M, Leydet A, Roque J.-P, Montero J.-L. Tetrahedron Lett. 1996; 37: 1781
- 9f Marti RE, Bleicher KH, Bair KW. Tetrahedron Lett. 1997; 38: 6145
- 10a Lee V, Newman MS. Org. Synth. 1970; 50: 77
- 10b
Cooper J,
Knight DW,
Gallagher PT.
J. Chem. Soc., Perkin Trans. 1 1992; 553
- 11a Kowalski CJ, Haque MS, Fields KW. J. Am. Chem. Soc. 1985; 107: 1429
- 11b Kowalski CJ, Reddy RE. J. Org. Chem. 1992; 57: 7194
- 12a Barton DH. R, Ching-Yuh C, Jaszberenyi JC. Tetrahedron Lett. 1991; 32: 3309
- 12b Barton DH. R, Ching-Yuh C, Jaszberenyi JC. Tetrahedron Lett. 1992; 33: 5013
- 13 Bonciolini S, Pulcinella A, Leone M, Schiroli D, Ruiz AL, Sorato A, Dubois MA. J, Gopalakrishnan R, Masson G, Della CaN, Protti S, Fagnoni M, Zysman-Colman E, Johansson M, Noël T. Nat. Commun. 2024; 15: 1509
- 14 Zhang R, Yu T, Dong G. Science 2023; 382: 951
- 15 Wheatley E, Melnychenko H, Silvi M. J. Am. Chem. Soc. 2024; 146: 34285
- 16 Ranganathan D, Rao CB, Ranganathan S, Mehrotra AK, Iyengar R. J. Org. Chem. 1980; 45: 1185
- 17a Chi Y, Guo L, Kopf NA, Gellman SH. J. Am. Chem. Soc. 2008; 130: 5608
- 17b Wiesner M, Revell JD, Wennemers H. Angew. Chem. Int. Ed. 2008; 47: 1871
- 17c Bui T, Syed S, Barbas CF. J. Am. Chem. Soc. 2009; 131: 8758
- 17d Wang S, Liu X, Zhao Q, Zheng C, Wang S, You S. Angew. Chem. Int. Ed. 2015; 54: 14929
- 17e Mitsunuma H, Shibasaki M, Kanai M, Matsunaga S. Angew. Chem. Int. Ed. 2012; 51: 5217
- 17f Brenner M, Seebach D. Helv. Chim. Acta 1999; 82: 2365
- 17g Calderari G, Seebach D. Helv. Chim. Acta 1985; 68: 1592
- 17h Johnson TA, Jang DO, Slafer BW, Curtis MD, Beak P. J. Am. Chem. Soc. 2002; 124: 11689
- 17i Curran DP, Jacobs PB, Elliott RL, Kim BH. J. Am. Chem. Soc. 1987; 109: 5280
- 17j Matsuda Y, Kitajima M, Takayama H. Org. Lett. 2008; 10: 125
- 17k Lian X.-L, Meng J, Han Z.-Y. Org. Lett. 2016; 18: 4270
- 18a Barton DH. R, Crich D, Kretzschmar G. Tetrahedron Lett. 1984; 25: 1055
- 18b Barton DH. R, Hervé Y, Potier P, Thierry J. Tetrahedron 1987; 43: 4297
- 18c Barton DH. R, Togo H, Zard SZ. Tetrahedron 1985; 41: 5507
- 19 Sumi K, Fabio RD, Hanessian S. Tetrahedron Lett. 1992; 33: 749
- 20a Kushibiki N, Ogasawara M, Yoshida H. J. Polym. Sci., Polym. Chem. Ed. 1979; 17: 1227
- 20b Hayashi K, Irie M. Pure Appl. Chem. 1973; 34: 259
- 21a Zuo Z, Ahneman DT, Chu L, Terrett JA, Doyle AG, MacMillan DW. C. Science 2014; 345: 437
- 21b Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 5257
- 21c Chu L, Ohta C, Zuo Z, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 10886
- 22a Jin Y, Fu H. Asian J. Org. Chem. 2017; 6: 368
- 22b Schwarz J, König B. Green Chem. 2018; 20: 323
- 22c Gant Kanegusuku AL, Roizen JL. Angew. Chem. Int. Ed. 2021; 60: 21116
- 22d Kitcatt DM, Nicolle S, Lee A.-L. Chem. Soc. Rev. 2022; 51: 1415
- 22e
Ramirez NP,
Gonzalez-Gomez JC.
Eur. J. Org. Chem. 2017; 2154
- 22f Zhang O, Schubert JW. J. Org. Chem. 2020; 85: 6225
- 23a Gavelle S, Innocent M, Aubineau T, Guérinot A. Adv. Synth. Catal. 2022; 364: 4189
- 23b
Li L,
Yao Y,
Fu N.
Eur. J. Org. Chem. 2023; 26
- 24 Nguyen VT, Nguyen VD, Haug GC, Dang HT, Jin S, Li Z, Flores-Hansen C, Benavides BS, Arman HD, Larionov OV. ACS Catal. 2019; 9: 9485
- 25 Nguyen VT, Nguyen VD, Haug GC, Vuong NT. H, Dang HT, Arman HD, Larionov OV. Angew. Chem. Int. Ed. 2020; 59: 7921
- 26 Dang HT, Haug GC, Nguyen VT, Vuong NT. H, Nguyen VD, Arman HD, Larionov OV. ACS Catal. 2020; 10: 11448
- 27a Sui X, Dang HT, Porey A, Trevino R, Das A, Fremin SO, Hughes WB, Thompson WT, Dhakal SK, Arman HD, Larionov OV. Chem. Sci. 2024; 15: 9582
- 27b Porey A, Fremin SO, Nand S, Trevino R, Hughes WB, Dhakal SK, Nguyen VD, Greco SG, Arman HD, Larionov OV. ACS Catal. 2024; 14: 6973
- 27c Zhuang K, Haug GC, Wang Y, Yin S, Sun H, Huang S, Trevino R, Shen K, Sun Y, Huang C, Qin B, Liu B, Cheng M, Larionov OV, Jin S. J. Am. Chem. Soc. 2024; 146: 8508
- 28 Bhatt K, Adili A, Tran AH, Elmallah KM, Ghiviriga I, Seidel D. J. Am. Chem. Soc. 2024; 146: 26331
- 29a Rubanov ZM, Levin VV, Dilman AD. Org. Lett. 2024; 26: 3174
- 29b Zhilyaev KA, Lipilin DL, Kosobokov MD, Samigullina AI, Dilman AD. Adv. Synth. Catal. 2022; 364: 3295
- 30 Noyori R, Kato M, Kawanisi M, Nozaki H. Tetrahedron 1968; 25: 1125
- 31 Okada K, Okubo K, Oda M. J. Photochem. Photobiol., A 1991; 57: 265
- 32 Matt C, Wagner A, Mioskowski C. J. Org. Chem. 1997; 62: 234
- 33a Gowda R, Inamdar GS, Kuzu O, Dinavahi SS, Krzeminski J, Battu MB, Voleti SR, Amin S, Robertson GP. Oncotarget 2017; 8: 28260
- 33b Merarchi M, Jung YY, Fan L, Sethi G, Ahn KS. Biomedicines 2019; 7: 53
- 33c Jung YY, Um J.-Y, Sethi G, Ahn KS. Int. J. Mol. Sci. 2022; 23: 9848