Subscribe to RSS
DOI: 10.1055/a-2675-4391
Dynamic Kinetic Activation of Aziridines to Access Azepines
G.-W.W acknowledges the funding supports from the National Natural Science Foundation of China (No. 22201114), the Science and Technology Major Program of Gansu Province of China (22ZD6FA006, 23ZDFA015, 24ZD13FA017) and the National Natural Science Fund for Excellent Young Scientists Fund Program (Overseas)-YQHW.
Supported by: Science and Technology Major Program of Gansu Province of China 22ZD6FA006, 23ZDFA015, 24ZD13FA017
Supported by: The National Natural Science Foundation of China 22201114

Abstract
The activation of aziridines is typically a substrate-controlled process, where the regioselectivity of C–N bond cleavage is strongly influenced by the substitution pattern on the aziridine ring. Recently, our group developed a dynamic kinetic protocol that enables a catalyst-controlled activation strategy for aziridines. This article first provides a brief overview of existing methods for aziridine activation and then focuses on the development of a radical–polar crossover (4+3) cycloaddition between aziridines and 2-substituted 1,3-dienes, which is made possible through this dynamic kinetic activation approach.
Keywords
Aziridines ring-opening reaction - Dynamic kinetic activation - Cycloaddition - Radical–polar crossoverPublication History
Received: 08 June 2025
Accepted after revision: 03 August 2025
Article published online:
20 August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Doubský J, Rádl S, Cinibulk J, Klvaňa R. Org Process Res Dev 2022; 26: 859
- 1b Nagamalla S, Paul D, Mague JT, Sathyamoorthi S. Org Lett 2022; 24: 6202
- 1c Cheng Y, Yi X, Zhang Y. et al. J Am Chem Soc 2023; 145: 8896
- 1d Chavan SP, Kadam AL, Shinde SS, Gonnade RG. Chem Asian J 2020; 15: 415
- 1e Smith AB, Kim D-S. J Org Chem 2006; 71: 2547
- 1f Marshall CM, Federice JG, Bell CN, Cox PB, Njardarson JT. J Med Chem 2024; 67: 11622
- 2a Dequina HJ, Jones CL, Schomaker JM. Chem 2023; 9: 1658
- 2b Dank C, Lelo L. Org Biomol Chem 2023; 21: 4553
- 2c Tanzeela Q, Andleeb A, Deeptanu S, Praveen Kumar S. Curr Org Chem 2021; 25: 1868
- 3a Takeda Y, Sameera WMC, Minakata S. Acc Chem Res 2020; 53: 1686
- 3b Sabir S, Kumar G, Verma VP, Jat JL. ChemistrySelect 2018; 3: 3702
- 3c Feng J-J, Zhang J. ACS Catal 2016; 6: 6651
- 4a Huang C-Y, Doyle AG. Chem Rev 2014; 114: 8153
- 4b García-Cárceles J, Bahou KA, Bower JF. ACS Catal 2020; 10: 12738
- 4c Takeda Y, Sameera WMC, Minakata S. Acc Chem Res 2020; 53: 1686
- 4d Davies J, Janssen-Müller D, Zimin DP. et al. J Am Chem Soc 2021; 143: 4949
- 4e Dongbang S, Doyle AG. J Am Chem Soc 2022; 144: 20067
- 4f Huang C-Y, Doyle AG. J Am Chem Soc 2012; 134: 9541
- 4g Huang C-Y, Doyle AG. J Am Chem Soc 2015; 137: 5638
- 4h Estrada JG, Williams WL, Ting SI, Doyle AG. J Am Chem Soc 2020; 142: 8928
- 4i Zhu C-Z, Feng J-J, Zhang J. Angew Chem Int Ed 2017; 56: 1351
- 4j Lin T-Y, Zhu C-Z, Zhang P. et al. Angew Chem Int Ed 2016; 55: 10844
- 4k Feng J-J, Lin T-Y, Wu H-H, Zhang J. Angew Chem Int Ed 2015; 54: 15854
- 4l Xu C-F, Zheng B-H, Suo J-J, Ding C-H, Hou X-L. Angew Chem Int Ed 2015; 54: 1604
- 4m Trost BM, Fandrick DR, Brodmann T, Stiles DT. Angew Chem Int Ed 2007; 46: 6123
- 4n Takeda Y, Ikeda Y, Kuroda A, Tanaka S, Minakata S. J Am Chem Soc 2014; 136: 8544
- 4o Kumar GS, Zhu C, Kancherla R, Shinde PS, Rueping M. ACS Catal 2023; 13: 8813
- 4p Ney JE, Wolfe JP. J Am Chem Soc 2006; 128: 15415
- 4q Duda ML, Michael FE. J Am Chem Soc 2013; 135: 18347
- 4r Ni Q, Liu X, Song Z, Ma Y. Org Lett 2024; 26: 8457
- 4s Feng J-J, Lin T-Y, Zhu C-Z, Wang H, Wu H-H, Zhang J. J Am Chem Soc 2016; 138: 2178
- 5a Zhang Y-Q, Vogelsang E, Qu Z-W, Grimme S, Gansäuer A. Angew Chem Int Ed 2017; 56: 12654
- 5b Hao W, Wu X, Sun JZ, Siu JC, MacMillan SN, Lin S. J Am Chem Soc 2017; 139: 12141
- 5c Wood DP, Guan W, Lin S. Synthesis 2021; 53: 4213
- 5d Williams WL, Gutiérrez-Valencia NE, Doyle AG. J Am Chem Soc 2023; 145: 24175
- 6 Woods BP, Orlandi M, Huang C-Y, Sigman MS, Doyle AG. J Am Chem Soc 2017; 139: 5688
- 7a Wang Y-Z, Wang Z-H, Eshel IL. et al. Nat Commun 2023; 14: 2322
- 7b Hu X, Cheng-Sánchez I, Cuesta-Galisteo S, Nevado C. J Am Chem Soc 2023; 145: 6270
- 7c Liu S, Wang SL, Wan J. et al. Org Lett 2023; 25: 6582
- 7d Lan Y, Han Q, Liao P. et al. J Am Chem Soc 2024; 146: 25426
- 7e Zhang L, Wang H, Santiago TG, Yue W-J, Martin R. Nat Catal 2025; 8: 348
- 7f Tang W, Fan P. Org Lett 2023; 25: 5756
- 7g Fan P, Jin Y, Liu J, Wang R, Wang C. Org Lett 2021; 23: 7364
- 8 Steiman TJ, Liu J, Mengiste A, Doyle AG. J Am Chem Soc 2020; 142: 7598
- 9a Sabitha G, Satheesh Babu R, Rajkumar M, Reddy CS, Yadav JS. Tetrahedron Lett 2001; 42: 3955
- 9b Zhang WX, Hu WG, Su L, Liu LQ. Chin Chem Lett 2012; 23: 285
- 9c Minakata S, Hotta T, Oderaotoshi Y, Komatsu M. J Org Chem 2006; 71: 7471
- 9d Zhang J, Meng L, Li C, Xiao G. Chin J Chem 2013; 31: 1508
- 10 Wang L, Zhou P-P, Xie D. et al. J Am Chem Soc 2025; 147: 2675
- 11a Pohlhaus PD, Bowman RK, Johnson JS. J Am Chem Soc 2004; 126: 2294
- 11b Zhang F, Sang X, Zhou Y, Cao W, Feng X. Org Lett 2022; 24: 1513
- 11c Wu X, Zhou W, Wu H-H, Zhang J. Chem Commun 2017; 53: 5661
- 12a Lin BL, Clough CR, Hillhouse GL. J Am Chem Soc 2002; 124: 2890
- 12b Nielsen DK, Huang C-Y, Doyle AG. J Am Chem Soc 2013; 135: 13605
- 12c Jensen KL, Standley EA, Jamison TF. J Am Chem Soc 2014; 136: 11145
- 12d Ravn AK, Vilstrup MBT, Noerby P, Nielsen DU, Daasbjerg K, Skrydstrup T. J Am Chem Soc 2019; 141: 11821
- 13a Wang P-Z, Xiao W-J, Chen J-R. Chin J Catal 2022; 43: 548
- 13b Huang H-M, Bellotti P, Glorius F. Chem Soc Rev 2020; 49: 6186
- 14a Shang H, Wang Y, Tian Y, Feng J, Tang Y. Angew Chem Int Ed 2014; 53: 5662
- 14b Garbo M, Besnard C, Guénée L, Mazet C. ACS Catal 2020; 10: 9604
- 14c Pan J, Ho TO, Chen Y-C, Yang B-M, Zhao Y. Angew Chem Int Ed 2024; 63: e202317703
- 15 Hartwig JF. Inorg Chem 2007; 46: 1936
- 16 Bai P-B, Durie A, Wang G-W, Larrosa I. Nat Commun 2024; 15: 31
- 17 Chen X, Yang C, Bai Y-F. et al. Angew Chem Int Ed 2025; e202505625