Subscribe to RSS
DOI: 10.1055/a-2681-6047
Practical One-Pot Four-Step Synthesis of Isocoumarin-3-Carboxylic Acids
Funding Information This work was financially supported by I. F. Lab (Internal grant 00050-z01737).

Abstract
We report a facile and versatile, one-pot four-step synthesis of functionalized isocoumarin-3-carboxylic acids on a 70–100 g scale. Commercially available substituted anthranilic acids are converted into the corresponding 2-carboxydiazonium bromides, which subsequently undergo the CuBr-catalyzed Meerwein reaction with methyl-2-fluoroacrylate to afford 2-(2-bromo-2-fluoro-3-methoxy-3-oxopropyl)benzoic acids, whereas o-bromobenzoic acids are formed as minor impurities in the concomitant Sandmeyer reactions. The treatment of the reaction mixture with CH2Cl2 and aqueous NaHCO3 removes the salts of the o-bromobenzoic acids into the aqueous phase while 2-(2-bromo-2-fluoro-3-methoxy-3-oxopropyl)benzoic acids cyclize to give methyl 3-fluoro-isocoumarin-3-carboxylates whose trituration with AcOH/HCl/H3BO3 eliminates HF and hydrolyses the ester groups to afford substituted isocoumarin-3-carboxylic acids in overall 42–53% yield.
Keywords
Isocoumarin - One-pot synthesis - Meerwein reaction - Heterocyclization - Eliminations - HydrolysisPublication History
Received: 09 July 2025
Accepted after revision: 11 August 2025
Accepted Manuscript online:
12 August 2025
Article published online:
18 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Saeed A. Eur J Med Chem 2016; 116: 290
- 1b Pal S, Pal M. Isocoumarin, Thiaisocoumarin, and Phosphaisocoumarin. Natural Occurrences, Synthetic Approaches and Pharmaceutical Applications. Elsevier; 2018: 17-37
- 1c Tammam MA, El-Din MIG, Abood A, El-Demerdash A. RSC Adv 2023; 13: 8049
- 2 Patel DK, Patel K, Kumar R, Gadewar M, Tahilyani V. Asian Pac J Trop Dis 2012; 2: 163
- 3 Tanabe Y, Matsumoto T, Hosoya T, Sato H, Shigemori H, Palmaerins A-D. Heterocycles 2013; 87: 1481
- 4a Engelmeier D, Hadacek F, Hofer O. et al. J Nat Prod 2004; 67: 19
- 4b Whyte AC, Gloer JB, Scott JA, Malloch D. J Nat Prod 1996; 59: 765
- 5 Tianpanich K, Prachya S, Wiyakrutta S, Mahidol C, Ruchirawat S, Kittakoop P. J Nat Prod 2011; 74: 79
- 6a Nakhi A, Adepu R, Rambabu D. et al. Bioorg Med Chem Lett 2012; 22: 4418
- 6b Mulakayala N, Rambabu D, Raja MR. et al. Bioorg Med Chem 2012; 20: 759
- 7 Zhang H, Matsuda H, Kumahara A, Ito Y, Nakamura S, Yoshikawa M. Bioorg Med Chem Lett 2007; 17: 4972
- 8a Ukita T, Nakamura Y, Kubo A. et al. J Med Chem 2001; 44: 2204
- 8b Natsugari H, Ikeura Y, Kiyota Y. et al. J Med Chem 1995; 38: 3106
- 9 Powers JC, Asgian JL, Ekici ÖD, James KE. Chem Rev 2002; 102: 4639
- 10 Kinder MA, Kopf J, Margaretha P. Tetrahedron 2000; 56: 6763
- 11 Yelgaonkar SP, Campillo-Alvarado G, MacGillivray LR. J Am Chem Soc 2020; 142: 20772
- 12a Napolitano E. Org Prep Proced Int 1997; 29: 631
- 12b Barry RD. Chem Rev 1964; 64: 229
- 12c Pal S, Pal M. Isocoumarin, Thiaisocoumarin, and Phosphaisocoumarin. Natural Occurrences, Synthetic Approaches and Pharmaceutical Applications. Elsevier; 2018: 153-176
- 12d Saikia P, Gogoi S. Adv Synth Catal 2018; 360: 2063
- 12e Gogoi N, Parhi R, Kailash R, Tripathi P, Pachuau L, Kaishap PP. Tetrahedron 2024; 150: 133740
- 12f Hussain H, Green IR. Expert Opin Ther Pat 2017; 27: 1267
- 13 Hickey DMB, MacKenzie AR, Moody CJ, Rees CW. J Chem Soc, Perkin Trans 1 1987; 921
- 14 Sakamoto T, Kondo Y, Yamanaka H. Heterocycles 1988; 27: 453
- 15 Hussain M, Ahmad H, Badaruddin S. et al. Asian J Chem 2012; 24: 5473
- 16 Heynekamp JJ, Hunsaker LA, Jagt TAV, Royer RE, Deck LM, Jagt DLV. Bioorg Med Chem 2008; 16: 5285
- 17 Tsuchida T, Kuroda A, Nagai H. et al. J Antibiot 2003; 56: 38
- 18 Gadakh SK, Sudalai A. RSC Adv 2014; 4: 57658
- 19 Minami T, Nishimoto A, Nakamura Y, Hanaoka H. Chem Pharm Bull 1994; 42: 1700
- 20 Wang L, Shen W. Tetrahedron Lett 1998; 39: 7625
- 21 Larock RC, Doty MJ, Han X. J Org Chem 1999; 64: 8770
- 22 Waters SP, Kozlowski MC. Tetrahedron Lett 2001; 42: 3567
- 23 Nakamura Y, Ukita T. Org Lett 2002; 4: 2317
- 24 Vicente J, Gonzalez-Herrero P, Frutos-Pedreno R, Chicote MT. Organometallics 2011; 30: 1079
- 25a Rossi R, Carpita A, Bellina F, Stabile P, Mannina L. Tetrahedron 2003; 59: 2067
- 25b Subramanian V, Batchu VR, Barange D, Pal M. J Org Chem 2005; 70: 4778
- 26 Yao T, Larock RC. J Org Chem 2003; 68: 5936
- 27 Nakayama A, Hamamoto K, Fujiwara I. et al. Chem Lett 2023; 52: 640
- 28 Obushak MD, Matiychuk VS, Turytsya VV. Tetrahedron Lett 2009; 50: 112
- 29 Turytsya VV, Matiychuk VS, Obushak MDJ. Org Pharm Chem 2012; 10: 37
- 30 Buckle DR, Cantello BCC, Smith H. DE2448387 A1 1975
- 31a Pae AN, Kim YK, Lim SM. et al. WO2021256899 A1 2021
- 31b Seitz M, Pluth MD, Raymond KN. Inorg Chem 2007; 46: 351
- 32 Sheldrick G. Acta Crystallogr Sect A 2008; 64: 112
- 33 CCDC 2466263-2466264 contain the supplementary crystallographic data for this paper. The data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/structures
- 34a Brunet P, Simard M, Wuest JD. J Am Chem Soc 1997; 119: 2737
- 34b Desiraju GR. Curr Opin Solid State Mater Sci 1997; 2: 451
- 34c Hisaki I, Fujii T, Oketani R. Chem Phys Rev 2024; 5: 041304
- 35a General procedure for one-pot four-step preparation of isocoumarin-3-carboxylic acids
- 35b Diazotization. A 48% aqueous solution of HBr (200 mL) was added to a stirred solution of the corresponding anthranilic acid 1 (0.75 mol) in acetone (400 mL). A solution of sodium nitrite (59 g, 0.86 mol) in deionized water (200 mL) was slowly added to the suspension formed at −5 to 0 °C and the reaction mixture was stirred at 0 °C for 1 hour
- 35c The Meerwein reaction. The cold solution (or suspension) of arenediazonium bromide 2 was poured in small portions into a stirred mixture of methyl 2-fluoroacrylate (76 g, 0.73 mol), CuBr (5 g, 35 mmol), and hydroquinone (2 g, 18 mmol) at a temperature between 40 and 45 °C. The reaction is exothermic with the rapid release of nitrogen gas. After the end of the gas release, the reaction mixture was diluted with water (700 mL) and methylene chloride (300 mL). The organic layer was washed with water (3 × 100 mL) until neutral pH of the aqueous layer
- 35d Cyclization and hydrolysis. The organic layer was separated and mixed with a solution of sodium hydrocarbonate (100 g) in water (1 L), and the reaction mixture was vigorously stirred at room temperature for 12 h. The organic layer was separated, washed with water (2 × 500 mL), and the solvent was removed under reduced pressure. The residue was dissolved in a mixture of glacial acetic acid (350 mL), boric acid (10 g, 160 mmol), and concentrated HCl (50 mL). The resulting mixture was stirred under reflux for 48 h and then cooled down on an ice bath. The precipitated product was filtered off, washed with a 10% aqueous acetic acid (3 × 150 mL), and dried in a vacuum
- 35e 7-Methyl-isocoumarin-3-carboxylic acid (7c). Off-white crystalline powder. Yield 75 g (49%). M. p. 288–290 °C. 1H NMR (400 MHz, DMSO-d 6) δ 8.02 (s, 1H), 7.81 – 7.71 (m, 2H), 7.64 (s, 1H), 2.48 (s, 3H). 13C NMR (101 MHz, DMSO-d 6) δ 161.1, 160.5, 142.6, 141.1, 136.4, 132.5, 128.7, 128.0, 121.8, 111.8, 21.0. LCMS (ESI, pos.): m/z = 205.2 [M+H]+. HRMS calcd for C11H9O4 205.0495, found 205.0507 [M+H]+. Anal. calcd (%) for C11H8O4: C, 64.71; H, 3.95. Found: C, 64.61; H, 4.04
- 35f 6-Fluoro-isocoumarin-3-carboxylic acid (7d). Beige crystalline powder. Yield 81.1 g (52%). M. p. 238–240 °C. 1H NMR (400 MHz, DMSO-d 6) δ 13.98 (s, 1H), 8.26 (dd, J = 8.8, 5.5 Hz, 1H), 7.76 (dd, J = 9.2, 2.6 Hz, 1H), 7.67 (s, 1H), 7.62 – 7.54 (m, 1H). 13C NMR (101 MHz, DMSO-d 6) δ 165.8 (d, J = 254.1 Hz), 160.8, 159.7, 144.3, 138.0 (d, J = 11.3 Hz), 132.7 (d, J = 10.4 Hz), 118.8, 118.6, 113.7 (d, J = 23.2 Hz), 111.02 (d, J = 2.8 Hz). 19F NMR (376 MHz, DMSO-d 6) δ −104.39 to −104.48 (m). LCMS (ESI, pos.): m/z = 209.2 [M+H]+. HRMS calcd for C10H6FO4 209.0245, found 209.0243 [M+H]+. Anal. calcd (%) for C10H5FO4: C, 57.71; H, 2.42. Found: C, 57.66; H, 2.45