RSS-Feed abonnieren
DOI: 10.1055/a-2681-6213
Polarity Inversion Strategy for Nickel-Catalyzed Reductive Coupling of Aldehydes with Alkenyl Halides
This work was supported by the Grants-in-Aid for Scientific Research (No. 20H02737) from MEXT (Japan).
Gefördert durch: Japan Society for the Promotion of Science 20H02737,23K20277
Gefördert durch: Murata Science and Education Foundation
Gefördert durch: Toshiaki Ogasawara Memorial Foundation
Gefördert durch: Iketani Science and Technology Foundation
Gefördert durch: Kumagai Science and Technology Foundation

Abstract
We report a nickel-catalyzed reductive cross-coupling strategy for the stereoconvergent synthesis of allyl alcohols from aldehydes and alkenyl halides. Despite the synthetic importance of allyl alcohols, achieving their stereoselective construction remains a considerable challenge. To date, no nickel-catalyzed reductive cross-coupling between aldehydes and alkenyl halides has been reported. In this study, activation of aldehydes with silyl groups enables their selective oxidative addition to low-valent nickel. Following oxidative addition and subsequent single-electron reduction, polarity inversion is proposed to generate a nucleophilic alkyl–nickel intermediate, which selectively undergoes cross-coupling with electro-philic alkenyl halides to afford allyl alcohols.
Publikationsverlauf
Eingereicht: 08. Juli 2025
Angenommen nach Revision: 11. August 2025
Artikel online veröffentlicht:
26. August 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1 Everson DA, Shrestha R, Weix DJ. J Am Chem Soc 2010; 132: 920-921
- 2 Ackerman LKG, Lovell MM, Weix DJ. Nature 2015; 524: 454-457
- 3a Ehehalt LE, Beleh OM, Priest IC. et al. Chem Rev 2024; 124: 13397-13569
- 3b Holmes M, Schwartz LA, Krische MJ. Chem Rev 2018; 118: 6026-6052
- 3c Moragas T, Correa A, Martin R. Chem Eur J 2014; 20: 8242-8258
- 4a Kerackian T, Bouyssi D, Pilet G. et al. ACS Catal 2022; 12: 12315-12325
- 4b Cherney AH, Kadunce NT, Reisman SE. J Am Chem Soc 2013; 135: 7442-7445
- 4c Ji H, Lin D, Tai L. et al. J Am Chem Soc 2022; 144: 23019-23029
- 4d Hernández-Mejías AD, Shimozono AM, Hazra A. et al. J Am Chem Soc 2025; 147: 3468-3477
- 4e Zhu C, Lee S-C, Chen H, Yue H, Rueping M. Angew Chem Int Ed 2022; 61: e202204212
- 4f Wotal AC, Weix DJ. Org Lett 2012; 14: 1476-1479
- 4g Wu B-B, Xu J, Bian K-J, Gao Q, Wang X-S. J Am Chem Soc 2022; 144: 6543-6550
- 4h Wu F, Lu W, Qian Q, Ren Q, Gong H. Org Lett 2012; 14: 3044-3047
- 4i Tan Z, Wan X, Zang Z, Qian Q, Deng W, Gong H. Chem Commun 2014; 50: 3827-3830
- 4j Yin H, Zhao C, You H, Lin K, Gong H. Chem Commun 2012; 48: 7034-7036
- 4k Gao Y, Baran PS. Angew Chem Int Ed 2023; 62: e202315203
- 4l Wang J, Cary BP, Beyer PD, Gellman SH, Weix DJ. Angew Chem Int Ed 2019; 58: 12081-12085
- 5a Zhu Z, Xiao J, Li M, Shi Z. Angew Chem Int Ed 2022; 61: e202201370
- 5b Zhang S, Perveen S, Ouyang Y. et al. Angew Chem Int Ed 2022; 61: e202117843
- 5c Zhang S, Li L, Li J. et al. Angew Chem Int Ed 2021; 60: 7275-7282
- 5d Wen S, Bu J, Shen K. J Org Chem 2024; 89: 16134-16144
- 5e Poremba KE, Dibrell SE, Reisman SE. ACS Catal 2020; 10: 8237-8246
- 5f Correa A, Martin R. J Am Chem Soc 2014; 136: 7253-7256
- 5g Isbrandt ES, Nasim A, Zhao K, Newman SG. J Am Chem Soc 2021; 143: 14646-14656
- 5h Huang S, Zhou JS. J Am Chem Soc 2024; 146: 12895-12900
- 5i Huang H-M, Bellotti P, Erchinger JE, Paulisch TO, Glorius F. J Am Chem Soc 2022; 144: 1899-1909
- 5j Garcia KJ, Gilbert MM, Weix DJ. J Am Chem Soc 2019; 141: 1823-1827
- 5k Ishida S, Suzuki H, Uchida S, Yamaguchi E, Itoh A. Eur J Org Chem 2019; 7483-7487
- 5l Majumdar KK, Cheng C-H. Org Lett 2000; 2: 2295-2298
- 5m Huang Y-C, Majumdar KK, Cheng C-H. J Org Chem 2002; 67: 1682-1684
- 5n Chen H, Hu L, Ji W, Yao L, Liao X. ACS Catal 2018; 8: 10479-10485
- 5o Hu L, Fosso JLBL, Guillot R, Mellah M, Schulz E. Chem Eur J 2024; 30: e202403432
- 5p Hsieh J-C, Cheng C-H. Chem Commun 2005; 4554-4556
- 6a Turro RF, Wahlman JLH, Tong ZJ. et al. J Am Chem Soc 2023; 145: 14705-14715
- 6b Zhu C, Lee S-C, Chen H, Yue H, Rueping M. Angew Chem Int Ed 2022; 61: e202204212
- 6c Hu X, Cheng-Sánchez I, Cuesta-Galisteo S, Nevado C. J Am Chem Soc 2023; 145: 6270-6279
- 6d Lu X, Wang Y, Zhang B. et al. J Am Chem Soc 2017; 139: 12632-12637
- 6e Zou L, Yang H, Xie T, Wang L-W, Ye Y. J Org Chem 2024; 89: 15822-15833
- 6f Zhang H, Ye Z, Wu Y. et al. Org Lett 2024; 26: 994-999
- 6g Gu J, Qiu C, Lu W, Qian Q, Lin K, Gong H. Synthesis 2017; 49: 1867-1873
- 6h Lu Q, Guan H, Wang Y-E. et al. J Org Chem 2022; 87: 8048-8058
- 6i Liu J, Gong H. Org Lett 2018; 20: 7991-7995
- 6j Geng J, Sun D, Song Y, Tong W, Wu F. Org Lett 2022; 24: 1807-1811
- 6k DeLano TJ, Reisman SE. ACS Catal 2019; 9: 6751-6754
- 6l Ye Y, Qi X, Xu B. et al. Chem Sci 2022; 13: 6959-6966
- 6m Johnson KA, Biswas S, Weix DJ. Chem Eur J 2016; 22: 7399-7402
- 6n Yu W, Chen L, Tao J, Wang T, Fu J. Chem Commun 2019; 55: 5918-5921
- 6o Zhou Q-Q, Düsel SJS, Lu L-Q, König B, Xiao W-J. Chem Commun 2019; 55: 107-110
- 6p Qiu C, Yao K, Zhang X, Gong H. Org Biomol Chem 2016; 14: 11332-11335
- 6q Hofstra JL, Cherney AH, Ordner CM, Reisman SE. J Am Chem Soc 2018; 140: 139-142
- 6r Cherney AH, Reisman SE. J Am Chem Soc 2014; 136: 14365-14368
- 7 Lin C, Zhang J, Sun Z. et al. Angew Chem, Int Ed 2024; 63: e202405290
- 8a Chen C, Xu H, Zhu S. Angew Chem Int Ed 2025; 64: e202419965
- 8b Xiao J, Montgomery J. ACS Catal 2022; 12: 2463-2471
- 8c Xiao J, Li Z, Montgomery J. J Am Chem Soc 2021; 143: 21234-21240
- 8d Shrestha R, Weix DJ. Org Lett 2011; 13: 2766-2769
- 8e Montgomery J, Savchenko AV. J Am Chem Soc 1996; 118: 2099-2100
- 8f Jackson EP, Montgomery J. J Am Chem Soc 2015; 137: 958-963
- 8g Shrestha R, Dorn SCM, Weix DJ. J Am Chem Soc 2013; 135: 751-762
- 8h Cruz CL, Montgomery J. Chem Sci 2021; 12: 11995-12000
- 9a Ogoshi S, Kamada H, Kurosawa H. Tetrahedron 2006; 62: 7583-7588
- 9b Shirataki H, Ohashi M, Ogoshi S. Eur J Org Chem 2019; 9: 1883-1887
- 9c Hoshimoto Y, Ohashi M, Ogoshi S. Acc Chem Res 2015; 48: 1746-1755
- 9d Ho-shimoto Y, Yabuki H, Kumar R, Suzuki H, Ohashi M, Ogoshi S. J Am Chem Soc 2014; 136: 16752-16755
- 9e Kumar R, Hoshimoto Y, Yabuki H, Ohashi M, Ogoshi S. J Am Chem Soc 2015; 137: 11838-11845
- 10a Jagtap RA, Vinod CP, Punji B. ACS Catal 2019; 9: 431-441
- 10b Tsou TT, Kochi JK. J Am Chem Soc 1979; 101: 6319-6332
- 11a While the Nozaki–Hiyama–Kishi (NHK) reaction is widely recognized as an effective method for allyl alcohol synthesis, its reliance on highly toxic chromium reagents remains a major limitation. The present methodology offers a promising chromium-free alternative, delivering high regio- and stereoselectivity
- 11b Okude Y, Hirano S, Hiyama T, Nozaki H. J Am Chem Soc 1977; 99: 3179-3181
- 11c Jin H, Uenishi J, Christ WJ, Kishi Y. J Am Chem Soc 1986; 108: 5644-5646
- 11d Takai K, Tagashira M, Kuroda T, Oshima K, Utimoto K, Nozaki H. J Am Chem Soc 1986; 108: 6048-6050