RSS-Feed abonnieren
DOI: 10.1055/a-2700-2940
Photoinduced Pd-Catalyzed Selective 1,4-Dicarbofunctionalization of 1,3-Butadiene with Alkyl or Aryl Bromides and Oxindoles
Authors
We are grateful for financial support from National Natural Science Foundation of China (22188101).


Abstract
The dicarbofunctionalization of 1,3-butadiene provides rapid access to complex allyl compounds in organic synthesis. Here we report a photoinduced palladium-catalyzed three-component coupling that enables selective 1,4-dicarbofunctionalization of 1,3-butadiene with alkyl or aryl bromides and oxindole nucleophiles. This transformation utilizes photoexcited Pd(0) species to activate both substrate classes via single-electron transfer, accommodating radicals of distinctly different electronic nature—nucleophilic alkyl radicals and electrophilic aryl radicals—through tailored reaction conditions. Under mild conditions, the protocol delivers 80 oxindole derivatives in good yields (up to 93%) and regioselectivities (up to >20:1 r.r.), providing efficient access to bioactive oxindole scaffolds.
Keywords
Dicarbofunctionalization - 1,3-Diene - Palladium catalysis - Photocatalysis - Radical reactionPublikationsverlauf
Eingereicht: 16. Juli 2025
Angenommen nach Revision: 11. August 2025
Artikel online veröffentlicht:
17. Oktober 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
- 
            References
- 1a Xiong Y, Sun Y, Zhang G. Tetrahedron Lett 2018; 59: 347
- 1b Bäckvall JE. In: Metal-Catalyzed Cross-Coupling Reactions and More. Meijere AD, Bräse S, Oestreich M. eds Weinheim: Wiley-VCH; 2014: 875
- 2 Wu X, Gong LZ. Synthesis 2019; 51: 122
- 3a Johansson Seechurn CCC, Kitching MO, Colacot TJ, Snieckus V. Angew Chem, Int Ed 2012; 51: 5062
- 3b Knappke CEI, von Wangelin JA. Chem Soc Rev 2011; 40: 4948
- 4a Lyons TW, Sanford MS. Chem Rev 2010; 110: 1147
- 4b Kambe N, Iwasaki T, Terao J. Chem Soc Rev 2011; 40: 4937
- 5a Frisch AC, Beller M. Angew Chem, Int Ed 2005; 44: 674
- 5b Firmansjah L, Fu GC. J Am Chem Soc 2007; 129: 11340
- 5c Rudolph A, Lautens M. Angew Chem, Int Ed 2009; 48: 2656
- 5d Bloome KS, McMahen RL, Alexanian EJ. J Am Chem Soc 2011; 133: 20146
- 5e Studer A, Curran DP. Angew Chem, Int Ed 2016; 55: 58
- 5f Peacock DM, Roos CB, Hartwig JF. ACS Cent Sci 2016; 2: 647
- 6a Parasram M, Gevorgyan V. Chem Soc Rev 2017; 46: 6227
- 6b Chuentragool P, Kurandina D, Gevorgyan V. Angew Chem, Int Ed 2019; 58: 11586
- 6c Kurandina D, Chuentragool P, Gevorgyan V. Synthesis 2019; 51: 985
- 7a Parasram M, Chuentragool P, Sarkar D, Gevorgyan V. J Am Chem Soc 2016; 138: 6340
- 7b Cheng W-M, Shang R, Fu Y. Nat Commun 2018; 9: 5215
- 7c Chuentragool P, Parasram M, Shi Y, Gevorgyan V. J Am Chem Soc 2018; 140: 2465
- 7d Wang G-Z, Shang R, Fu Y. Org Lett 2018; 20: 888
- 7e Koy M, Sandfort F, Tlahuext-Aca A, Quach L, Daniliuc CG, Glorius F. Chem Eur J 2018; 24: 4552
- 7f Feng L, Guo L, Yang C, Zhou J, Xia W. Org Lett 2020; 22: 3964
- 7g Adamik R, Földesi T, Novák Z. Org Lett 2020; 22: 8091
- 7h Ratushnyy M, Kvasovs N, Sarkar S, Gevorgyan V. Angew Chem, Int Ed 2020; 59: 10316
- 7i Kvasovs N, Iziumchenko V, Palchykov V, Gevorgyan V. ACS Catal 2021; 11: 3749
- 7j Lee GS, Kim D, Hong SH. Nat Commun 2021; 12: 991
- 7k Zhao G, Yao W, Mauro JN, Ngai M-Y. J Am Chem Soc 2021; 143: 1728
- 7l Meyer T, Rabeah J, Brückner A, Wu X-F. Chem Eur J 2021; 27: 5642
- 7m Yao W, Zhao G, Wu Y. et al. J Am Chem Soc 2022; 144: 3353
- 7n Torres GM, Liu Y, Arndtsen BA. Science 2020; 368: 318
- 7o Bellotti P, Koy M, Gutheil C, Heuvel S, Glorius F. Chem Sci 1810; 2021: 12
- 7p Koy M, Bellotti P, Katzenburg F, Daniliuc CG, Glorius F. Angew Chem, Int Ed 2020; 59: 2375
- 8 Cheung KPS, Kurandina D, Yata T, Gevorgyan V. J Am Chem Soc 2020; 142: 9932
- 9a Huang H-M, Koy M, Serrano E, Pflüger PM, Schwarz JL, Glorius F. Nat Catal 2020; 3: 393
- 9b Huang H-M, Bellotti P, Pflüger PM, Schwarz JL, Heidrich B, Glorius F. J Am Chem Soc 2020; 142: 10173
- 10a Liang Y, Bian T, Yadav K. et al. ACS Cent Sci 2024; 10: 1191
- 10b Zhang J, Huan X-D, Wang X, Li G-Q, Xiao W-J, Chen J-R. Chem Commun 2024; 60: 6340
- 10c Yang J, Li C-R, Guo X, Chen Z, Hu K, Li L-X. Org Lett 2024; 26: 5110
- 10d Li Z, Bao L, Wei K, Zhan B, Lu P, Zhang X. JACS Au 2024; 4: 4223
- 10e Han H, Yi W, Ding S, Ren X, Zhao B. Angew Chem, Int Ed 2024; 64: e202418910
- 10f Huang Y, Han Y-F, Zhang C-L, Ye S. Org Lett 2025; 27: 415
- 10g Tyerman S, MacKay DG, Clark KF. et al. ACS Catal 2025; 15: 917
- 11a Schwarz JL, Huang H-M, Paulisch TO, Glorius F. ACS Catal 2020; 10: 1621
- 11b Lu F-D, Lu L-Q, He G-F, Bai J-C, Xiao W-J. J Am Chem Soc 2021; 143: 4168
- 11c Wang P-Z, Wu X, Cheng Y, Jiang M, Xiao W-J, Chen J-R. Angew Chem, Int Ed 2021; 60: 22956
- 11d Li F, Lin S, Chen Y. et al. Angew Chem, Int Ed 2021; 60: 1561
- 12 Cai Y, Gaurav G, Ritter T. Angew Chem, Int Ed 2024; 63: e202311250
- 13 Zhan X, Nie Z, Li N. et al. Angew Chem, Int Ed 2024; 63: e202404388
- 14 Ruan X-Y, Wu D-X, Li W-A. et al. J Am Chem Soc 2024; 146: 12053
- 15 Wu D-X, Ruan X-Y, Zhang W-Q, Sayed M, Han Z-Y. Org Lett 2025; 27: 618
 
    