Subscribe to RSS
DOI: 10.1055/a-2701-5906
New Insight into the Photochromism of Spiropyrans: Substituent Effects on Equilibrium, Rate Constants, and Dipole Moments
Authors

Abstract
Spiropyrans (SPs) and merocyanines (MCs) are among the most widely used photochromic systems today. Besides solvent polarity and temperature, the electronic properties of the substituents have a significant influence on photochromic behavior. In this work, a comprehensive study on the influences of electron-donating and -withdrawing substituents at the benzopyran as well as the indole moiety of the photochromic system are elucidated. For this purpose, changes in rate constants and the shift of the SP/MC equilibrium are investigated utilizing UV/vis and NMR spectroscopy. Based on DFT calculations, a relationship between these properties and the dipole moments of the molecules is established.
Keywords
Spiropyran - Merocyanine - Photochromism - Substituent-effects - Rate constant - Dipole momentPublication History
Received: 21 July 2025
Accepted after revision: 14 September 2025
Article published online:
29 September 2025
© 2025. Thieme. All rights reserved.
Georg Thieme Verlag KG
Oswald-Hesse-Straße 50, 70469 Stuttgart, Germany
-
References
- 1a Jerca FA, Jerca VV, Hoogenboom R. Nat Rev Chem 2022; 6: 51-69
- 1b Beharry AA, Woolley GA. Chem Soc Rev 2011; 40: 4422-4437
- 2a Irie M. Chem Rev 2000; 100: 1685-1716
- 2b Tian H, Yang S. Chem Soc Rev 2004; 33: 85-97
- 2c Bag SK, Pal A, Jana S, Thakur A. Chem Asian J 2024; 19: e202400238
- 3a Lerch MM, Szymański W, Feringa BL. Chem Soc Rev 2018; 47: 1910-1937
- 3b Duan Y, Shao H, Xiong C, Mao L, Wang D, Sheng Y. Chin J Chem 2021; 39: 985-998
- 4a Kortekaas L, Browne R. Chem Soc Rev 2019; 48: 3406-3424
- 4b Paramonov SV, Lokshin V, Fedorova OA. J Photochem Photobiol, C 2011; 12: 209-236
- 5a Goulet-Hanssen A, Eisenreich F, Hecht S. Adv Mater 2020; 32: 1905966
- 5b Klajn R. Chem Soc Rev 2014; 43: 148-184
- 5c Rad JK, Balzade Z, Mahdavian AR. J Photochem Photobiol, C 2022; 51: 100487
- 6a Peddie V, Abell AD. J Photochem Photobiol, C 2019; 40: 1-20
- 6b Li H, Vaughan JC. Chem Rev 2018; 18: 9412-9454
- 6c Lukinavičius G, Johnsson K. Curr Opin Chem Biol 2011; 12: 768-774
- 6d Ali AA, Kharbash R, Kim Y. Anal Chim Acta 2020; 1110: 199-223
- 7a Hirshberg Y. C R Acad Sci 1950; 231: 903-904
- 7b Hirshberg YM, Fischer E. J Chem Soc 1954; 297-303
- 8a Chen S, Jiang F, Cao Z, Wang G, Dang Z-M. Chem Commun 2015; 51: 12633-12636
- 8b Wan S, Zheng Y, Shen J, Yang W, Yin M. Appl Mater Interfaces 2014; 6: 19515-19519
- 8c Wojtyk JTC, Wasey A, Xiao N-N. et al. J Phys Chem A 2007; 111: 2511-2516
- 10a Qui W, Gurr PA, da Silva G, Qiao GG. Polym Chem 2019; 10: 1650-1659
- 10b Zhang H, Chen Y, Lin Y. et al. Macromolecules 2014; 47: 6783-6790
- 11a Wimberger L, Prasad SKK, Peeks MD, Andréasson J, Schmidt TW, Beves JE. J Am Chem Soc 2021; 143: 20758-20768
- 11b Brügner O, Reichenbach T, Sommer M, Walter M. J Phys Chem A 2017; 121: 2683-2687
- 12a Berman E, Fox RE, Thomson FD. J Am Chem Soc 1959; 21: 5605-5608
- 12b Liu J, Tang W, Sheng L. et al. Chem Asian J 2019; 14: 438-445
- 12c Balmond EI, Tautges BK, Faulkner AL. et al. J Org Chem 2016; 81: 8744-8758
- 13 Roxburgh CJ, Sammes PG, Abdullah A. Dyes Pigments 2009; 82: 226-237
- 14 Shiraishi Y, Yomo K, Hirai T. ACS Phys Chem Au 2023; 3: 290-298
- 15 Neese F. Wiley Interdiscip Rev Comput Mol Sci 2012; 1: 73-78
- 16a Weigend F. Phys Chem Chem Phys 2006; 8: 1057-1065
- 16b Weigend F, Ahlrichs R. Phys Chem Chem Phys 2005; 7: 3297-3305
- 16c Rappoport D, Furche F. J Chem Phys 2010; 133: 134105
- 16d Becke AD. J Chem Phys 1993; 98: 1372-1377
- 16e Stephens PJ, Devlin FJ, Chabalowski CF, Frisch MJ. J Phys Chem 1994; 98: 11623-11627
- 16f Grimme S, Antony J, Ehrlich S, Krieg H. J Chem Phys 2010; 132: 154104
- 16g Grimme S, Ehrlich S, Goerigk L. J Comput Chem 2011; 32: 1456-1465