Synthesis 2012; 44(16): 2555-2559
DOI: 10.1055/s-0031-1290780
special topic
© Georg Thieme Verlag Stuttgart · New York

Nitroxide-Mediated Polymerization of Styrene, Butyl Acrylate, or Methyl Methacrylate by Microflow Reactor Technology

Takahide Fukuyama
a   Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, Fax: +81(72)2549695   Email: ryu@c.s.osakafu-u.ac.jp
,
Yoshito Kajihara
a   Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, Fax: +81(72)2549695   Email: ryu@c.s.osakafu-u.ac.jp
,
Ilhyong Ryu*
a   Department of Chemistry, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan, Fax: +81(72)2549695   Email: ryu@c.s.osakafu-u.ac.jp
,
Armido Studer*
b   Institute of Organic Chemistry and NRW Graduate School of Chemistry, University of Münster, Corrensstr. 40, 48149 Münster, Germany, Fax: +49(251)8336523   Email: studer@uni-muenster.de
› Author Affiliations
Further Information

Publication History

Received: 07 February 2012

Accepted after revision: 05 March 2012

Publication Date:
30 March 2012 (online)


Abstract

The nitroxide-mediated radical polymerization (NMP) of styrene and butyl acrylate in microflow tubular reactors was examined. In comparison with polymerizations conducted in a batch reactor under otherwise identical conditions, the microflow setup gave higher conversions and produced polymers with lower polydispersity indices. Block copolymers of the two monomers could be synthesized by connecting two microflow tubular reactors through a T-junction. The NMP of methyl methacrylate in a microflow tubular reactor was also investigated.

 
  • References

    • 1a Microreactors in Organic Synthesis and Catalysis. Wirth T. Wiley-VCH; Weinheim: 2008
    • 1b Micro Process Engineering: A Comprehensive Handbook . Vols. 1–3. Hessel V, Renken A, Schouten JC, Yoshida J. Wiley-VCH; Weinheim: 2009
    • 1c Ahmed-Omer B, Brandt JC, Wirth T. Org. Biomol. Chem. 2007; 5: 733
    • 1d Watts P, Wiles C. Chem. Commun. (Cambridge) 2007; 443
    • 1e Mason BP, Price KE, Steinbacher JL, Bogdan AR, McQuade DT. Chem. Rev. 2007; 107: 2300
    • 1f McMullen JP, Jensen KF. Annu. Rev. Anal. Chem. 2010; 3: 19
    • 1g Webb D, Jamison TF. Chem. Sci. 2010; 1: 675
    • 1h Yoshida J.-i. Chem. Rec. 2010; 10: 332
    • 1i Wegner J, Ceylan S, Kirschning A. Chem. Commun. (Cambridge) 2011; 47: 4583
  • 2 For a review, see: Fukuyama T, Rahman MT, Sato M, Ryu I. Synlett 2008; 151
    • For our recent work using a microreactor, see:

    • 3a Fukuyama T, Shinmen M, Nishitani S, Sato M, Ryu I. Org. Lett. 2002; 4: 1691
    • 3b Liu S, Fukuyama T, Sato M, Ryu I. Org. Process Res. Dev. 2004; 8: 477
    • 3c Rahman MT, Fukuyama T, Kamata N, Sato M, Ryu I. Chem. Commun. (Cambridge) 2006; 2236
    • 3d Fukuyama T, Kippo T, Ryu I, Sagae T. Res. Chem. Intermed. 2009; 35: 1053
    • 3e Min K.-I, Lee T.-H, Park CP, Wu Z.-Y, Girault HH, Ryu I, Fukuyama T, Mukai YD.-P. Kim. Angew. Chem. Int. Ed. 2010; 49: 7063
    • 3f Tsutsumi K, Terao K, Yamaguchi H, Yoshimura S, Morimoto T, Kakiuchi K, Fukuyama T, Ryu I. Chem. Lett. 2010; 39: 828
    • 3g Fukuyama T, Mukai Y, Ryu I. Beilstein J. Org. Chem. 2011; 7: 1288
    • 3h Fukuyama T, Kajihara Y, Hino Y, Ryu I. J. Flow Chem. 2011; 1: 40
    • For radical reactions using a microreactor, see:

    • 4a Sugimoto A, Sumino Y, Takagi M, Fukuyama T, Ryu I. Tetrahedron Lett. 2006; 47: 6197
    • 4b Fukuyama T, Kobayashi M, Rahman MT, Kamata N, Ryu I. Org. Lett. 2008; 10: 533
    • 4c Sugimoto A, Fukuyama T, Sumino Y, Takagi M, Ryu I. Tetrahedron 2009; 65: 1593
    • 4d Wienhöfer IC, Studer A, Rahman MT, Fukuyama T, Ryu I. Org. Lett. 2009; 11: 2457
    • 4e Fukuyama T, Rahman MT, Kamata N, Ryu I. Beilstein J. Org. Chem. 2009; 5: 34
    • 4f Matsubara H, Hino Y, Tokizane M, Ryu I. Chem. Eng. J. (Amsterdam, Neth.) 2011; 167: 567
    • 4g Odedra A, Geyer K, Gustafsson T, Gilmour R, Seeberger PH. Chem. Commun. (Cambridge) 2008; 3025
    • For reviews, see:

    • 5a Steinbacher JL, McQuade DT. J. Polym. Sci., Part A: Polym. Chem. 2006; 44: 6505
    • 5b Wilms D, Klos J, Frey H. Macromol. Chem. Phys. 2008; 209: 343
    • 5c Bally F, Serra CA, Hessel V, Hadziioannou G. Macromol. React. Eng. 2010; 4: 543
    • 6a Matyjaszewski K, Xia J. Chem. Rev. 2001; 101: 2921
    • 6b Kamigaito M, Ando T, Sawamoto M. Chem. Rev. 2001; 101: 3689
    • 6c Tsarevsky NV, Matyjaszewski K. Chem. Rev. 2007; 107: 2270
    • 6d Ouchi M, Terashima T, Sawamoto M. Acc. Chem. Res. 2008; 41: 1120
    • 7a Barner-Kowollik C, Davis TP, Heuts JP. A, Stenzel MH, Vana P, Whittaker M. J. Polym. Sci., Part A: Polym. Chem. 2003; 41: 365
    • 7b Favier A, Charreyre M.-T. Macromol. Rapid Commun. 2006; 27: 653
    • 7c Barner-Kowollik C, Perrier S. J. Polym. Sci., Part A: Polym. Chem. 2008; 46: 5715
    • 7d Moad G, Rizzardo E, Thang SH. Acc. Chem. Res. 2008; 41: 1133
  • 8 David G, Boyer C, Tonnar J, Ameduri B, Lacroix-Desmazes P, Boutevin B. Chem. Rev. 2006; 106: 3936
  • 9 Yamago S. Chem. Rev. 2009; 109: 5051
  • 10 Poli R. Angew. Chem. Int. Ed. 2006; 45: 5058
    • 11a Hawker CJ, Bosman AW, Harth E. Chem. Rev. 2001; 101: 3661
    • 11b Studer A. Chem. Soc. Rev. 2004; 33: 267
    • 11c Studer A, Schulte T. Chem. Rec. 2005; 5: 27
    • 11d Sciannamea V, Jérôme R, Detrembleur C. Chem. Rev. 2008; 108: 1104
    • 11e Grubbs RB. Polym. Rev. 2011; 51: 104
    • 11f Tebben L, Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
    • 12a Iwasaki T, Yoshida J.-i. Macromolecules 2005; 38: 1159
    • 12b Iwasaki T, Kawano N, Yoshida J.-i. Org. Process Res. Dev. 2006; 10: 1126
    • 13a Wu T, Mei Y, Cabral JT, Xu C, Beers KL. J. Am. Chem. Soc. 2004; 126: 9880
    • 13b Xu C, Wu T, Drain CM, Batteas JD, Beers KL. Macromolecules 2005; 38: 6
    • 14a Russum JP, Jones CW, Schork FJ. Macromol. Rapid Commun. 2004; 25: 1064
    • 14b Diehl C, Laurino P, Azzouz N, Seeberger PH. Macromolecules 2010; 43: 10311
    • 14c Hornung CH, Guerrero-Sanchez C, Brasholz M, Saubern S, Chiefari J, Moad G, Rizzardo E, Thang SH. Org. Process Res. Dev. 2011; 15: 593
    • 15a Enright TE, Cunningham MF, Keoshkerian B. Macromol. Rapid Commun. 2005; 26: 221
    • 15b Rosenfeld C, Serra C, Brochon C, Hessel V, Hadziioannou G. Chem. Eng. Sci. 2007; 62: 5245
    • 15c Rosenfeld C, Serra C, Brochon C, Hadziioannou G. Chem. Eng. J. (Amsterdam, Neth.) 2008; 135: S242
    • 15d Enright TE, Cunningham MF, Keoshkerian B. Macromol. React. Eng. 2010; 4: 186
    • 15e Zitlalpopoca-Soriano AG, Vivaldo-Lima E, Flores-Tlacuahuac A. Macromol. React. Eng. 2010; 4: 516
    • 15f Zitlalpopoca-Soriano AG, Vivaldo-Lima E, Flores-Tlacuahuac A. Macromol. React. Eng. 2010; 4: 599
    • 16a Charleux B, Nicolas J, Guerret O. Macromolecules 2005; 38: 5485
    • 16b Nicolas J, Dire C, Mueller L, Belleney J, Charleux B, Marque SR. A, Bertin D, Magnet S, Couvreur L. Macromolecules 2006; 39: 8274
    • 16c Dire C, Charleux B, Magnet S, Couvreur L. Macromolecules 2007; 40: 1897
  • 17 Miele S, Nesvadba P, Studer A. Macromolecules 2009; 42: 2419
    • For other highly sterically hindered 2,2,6,6-tetraethyl-piperidine-N-oxyl regulators, see:

    • 18a Knoop CA, Studer A. J. Am. Chem. Soc. 2003; 125: 16327
    • 18b Wetter C, Gierlich J, Knoop CA, Müller C, Schulte T, Studer A. Chem. Eur. J. 2004; 10: 1156
    • 18c Siegenthaler KO, Studer A. Macromolecules 2006; 39: 1347
    • 18d Chang C.-C, Studer A. Macromolecules 2006; 39: 4062