Synthesis 2015; 47(18): 2713-2720
DOI: 10.1055/s-0034-1380429
special topic
© Georg Thieme Verlag Stuttgart · New York

A Total Synthesis of (±)-Rhododaurichromanic Acid A via an Oxa-[3+3] Annulation of Resorcinols

Guo-Ying Luo
a   School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China   Email: yutang@tju.edu.cn
,
Hao Wu
a   School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China   Email: yutang@tju.edu.cn
,
Yu Tang*
a   School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China   Email: yutang@tju.edu.cn
,
Hui Li
a   School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China   Email: yutang@tju.edu.cn
b   Division of Pharmaceutical Sciences, School of Pharmacy, and Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, USA   Email: rhsung@wisc.edu
,
Hyun-Suk Yeom
b   Division of Pharmaceutical Sciences, School of Pharmacy, and Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, USA   Email: rhsung@wisc.edu
c   Korean Research Institute of Chemical Technology, Daejeon, South Korea
,
Ka Yang
a   School of Pharmaceutical Science and Technology, Key Laboratory for Modern Drug Delivery and High-Efficiency, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, P. R. China   Email: yutang@tju.edu.cn
b   Division of Pharmaceutical Sciences, School of Pharmacy, and Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, USA   Email: rhsung@wisc.edu
,
Richard P. Hsung*
b   Division of Pharmaceutical Sciences, School of Pharmacy, and Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53705, USA   Email: rhsung@wisc.edu
› Author Affiliations
Further Information

Publication History

Received: 03 April 2015

Accepted after revision: 12 May 2015

Publication Date:
10 July 2015 (online)


Abstract

Development of an oxa-[3+3] annulation of vinyliminium salts with resorcinols as a 1,3-diketo equivalent is described. This annulation constitutes a cascade of Knoevenagel condensation–oxa-electrocyclization leading to a direct access to chromenes. A series of attempts was made to demonstrate its synthetic utility in natural product synthesis, culminating in a total synthesis of (±)-rhododaurichromanic acid A that also featured an intramolecular Gassman-type cationic [2+2] cycloaddition.

Supporting Information

 
  • References


    • For reviews on oxa-[3+3] annulations, see:
    • 1a Harrity JP. A, Provoost O. Org. Biomol. Chem. 2005; 3: 1349
    • 1b Hsung RP, Kurdyumov AV, Sydorenko N. Eur. J. Org. Chem. 2005; 23
    • 1c Hsung RP, Cole KP. Strategies and Tactics in Organic Synthesis . Pergamon; Oxford: 2004: 41
    • 1d Deng J, Wang X.-N, Hsung RP. A Formal [3+3] Cycloaddition Approach to Natural Product Synthesis. In Methods and Applications of Cycloaddition Reactions in Organic Syntheses. Nishiwaki N. Wiley-VCH; Weinheim: 2014. Chap. 12

      For recent reviews on [3+3] cycloadditions, see:
    • 2a Xu X, Doyle MP. Acc. Chem. Res. 2014; 47: 1396
    • 2b Moyano A, Rios R. Chem. Rev. 2011; 111: 4703

      For recent development and applications employing oxa-[3+3] annulations, see:
    • 3a Fotiadou AD, Zografos AL. Org. Lett. 2012; 14: 5664
    • 3b Hu J, Dong W, Wu X.-Y, Tong X. Org. Lett. 2012; 14: 5530
    • 3c dos Santos WH, da Silva-Filho LC. Synthesis 2012; 44: 3361
    • 3d Lee YR, Pandit RP. Synthesis 2012; 44: 2910
    • 3e Parker KA, Thomas L, Mindt TL. Tetrahedron 2011; 67: 9779

      For applications in total syntheses, see:
    • 4a Song L, Yao H, Zhu L, Tong R. Org. Lett. 2013; 15: 6
    • 4b Buchanan GS, Cole KP, Tang Y, Hsung RP. J. Org. Chem. 2011; 76: 7027
    • 4c Buchanan GS, Cole KP, Li G, Tang Y, You L, Hsung RP. Tetrahedron 2011; 67: 10105
    • 4d Yamashita S, Iso K, Kitajima K, Himura M, Hirama M. J. Org. Chem. 2011; 76: 2408
  • 5 For a leading review, see: Tang Y, Oppenheimer J, Song Z, You L, Zhang X, Hsung RP. Tetrahedron 2006; 62: 10785

    • For leading reviews, see:
    • 6a Tietze LF. Chem. Rev. 1996; 96: 115
    • 6b Tietze LF, Beifuss U. Angew. Chem., Int. Ed. Engl. 1993; 32: 131
    • 6c Tietze LF. J. Heterocycl. Chem. 1990; 27: 47
  • 7 For a recent review on biomimetic synthesis, see: Bulger PG, Bagal SK, Marquez R. Nat. Prod. Rep. 2008; 25: 254

    • See also:
    • 8a Yoder RA, Johnston JN. Chem. Rev. 2005; 105: 4730
    • 8b Beaudry CM, Malerich JP, Trauner D. Chem. Rev. 2005; 105: 4757
    • 8c Pindur U, Schneider GH. Chem. Soc. Rev. 1994; 23: 409
  • 9 Shen HC, Wang J, Cole KP, McLaughlin MJ, Morgan CD, Douglas CJ, Hsung RP, Coverdale HA, Gerasyuto AI, Hahn JM, Liu J, Wei L.-L, Sklenicka HM, Zehnder LR, Zificsak CA. J. Org. Chem. 2003; 68: 1729

    • For some earlier studies, see:
    • 10a Stevenson R, Weber JV. J. Nat. Prod. 1988; 51: 1215
    • 10b Schuda PF, Price WA. J. Org. Chem. 1987; 52: 1972
    • 10c de March P, Moreno-Mañas M, Casado J, Pleixats R, Roca JL. J. Heterocycl. Chem. 1984; 21: 85
    • 10d Tietze LF, Kiedrowski GV, Berger B. Synthesis 1982; 683
  • 11 For a leading review, see: Shen HC. Tetrahedron 2009; 65: 3931
  • 12 Kang Y, Mei Y, Du Y, Jin Z. Org. Lett. 2003; 5: 4481
    • 13a Wang X, Lee YR. Tetrahedron 2011; 67: 9179 ; and references cited therein
    • 13b Jung EJ, Park BH, Lee YR. Green Chem. 2010; 12: 2003
    • 13c Wang X, Lee YR. Tetrahedron 2009; 65: 10125
  • 15 Yeom H.-S, Li H, Tang Y, Hsung RP. Org. Lett. 2013; 15: 3130
  • 16 Hua DH, Chen Y, Sin H.-S, Maroto MJ, Robinson PD, Newell SW, Perchellet EM, Ladesich JB, Freeman JA, Perchellet J.-P, Chiang PK. J. Org. Chem. 1997; 62: 6888
    • 17a Wei L.-L, Hsung RP, Sklenicka HM, Gerasyuto AI. Angew. Chem. Int. Ed. 2001; 40: 1516
    • 17b Sklenicka HM, Hsung RP, McLaughlin MJ, Wei L.-L, Gerasyuto AI, Brennessel WW. J. Am. Chem. Soc. 2002; 124: 10435
    • 18a Gerasyuto AI, Hsung RP, Sydorenko N, Slafer BW. J. Org. Chem. 2005; 70: 4248
    • 18b Cravotto G, Nano GM, Tagliapietra S. Synthesis 2001; 49
  • 19 Hsung RP, Shen HC, Douglas CJ, Morgan CD, Degen SJ, Yao LJ. J. Org. Chem. 1999; 64: 690
    • 20a For a related condensation using ethylenediamine acetate salt that led to cannabichromeme, see: Lee YR, Wang X. Bull. Korean Chem. Soc. 2005; 26: 1933
    • 20b See also: Mechoulam R, Yapnitinsky B, Gaoni Y. J. Am. Chem. Soc. 1968; 90: 2420
  • 21 Murrayamine M, Wu T.-S, Wang M.-L, Wu P.-L, Ito C, Furukawa H. Phytochemistry 1996; 41: 1433
    • 22a Kurdyumov AV, Lin N, Hsung RP, Gullickson GC, Cole KP, Sydorenko N, Swidorski JJ. Org. Lett. 2006; 8: 191
    • 22b Sagar R, Singh P, Kumar R, Maulik PR, Shaw AK. Carbohydr. Res. 2005; 340: 1287
    • 22c Lee YR, Kim DH, Shim J.-J, Kim SK, Park JH, Cha JS, Lee C.-S. Bull. Korean Chem. Soc. 2002; 23: 998
  • 23 Zehnder LR, Dahl JW, Hsung RP. Tetrahedron Lett. 2000; 41: 1901
  • 24 Melliou E, Magiatis P, Mitaku S, Skaltsounis A.-L, Chinou E, Chinou I. J. Nat. Prod. 2005; 68: 78

    • For isolation of eriobrucinol, see:
    • 25a Jefferies PR, Worth GK. Tetrahedron 1973; 29: 903
    • 25b Bukuru J, Van TN, Puyvelde LV, He W, De Kimpe N. Tetrahedron 2003; 59: 5905
    • 25c For additional data on eriobrucinol, see: Rashid MA, Armstrong JA, Gray AI, Waterman PG. Phytochemistry 1992; 31: 3583

      For total syntheses of iso-eriobrucinol A and B, and eriobrucinol, see:
    • 26a Crombie L, Redshaw SD, Black DA, Whiting DA. J. Chem. Soc., Chem. Commun. 1979; 628
    • 26b Crombie L, Redshaw SD, Black DA, Whiting DA. J. Chem. Soc., Perkin Trans. 1 1983; 1411
    • 27a Gassman PG, Chavan SP, Fertel LB. Tetrahedron Lett. 1990; 31: 6489
    • 27b Gassman PG, Lottes AC. Tetrahedron Lett. 1992; 33: 157
    • 28a Ko C, Feltenberger JB, Ghosh SK, Hsung RP. Org. Lett. 2008; 10: 1971
    • 28b Feltenberger JB, Ko C, Deng J, Ghosh SK, Hsung RP. Heterocycles 2012; 84: 843
    • 28c Deng J, Hsung RP, Ko C. Org. Lett. 2012; 14: 5562
  • 29 Jpn. Kokai Tokyo Koho JP 82-28080, 1982 ; Chem. Abstr. 1982, 97, 3777.
  • 30 For isolation, see: Kashiwada Y, Yamazaki K, Ikeshiro Y, Yamagishi T, Fujioka T, Mihashi K, Mizuki K, Cosentino LM, Fowke K, Morris-Natschke SL, Lee K.-H. Tetrahedron 2001; 57: 1559

    • For total syntheses, see:
    • 31a Kurdyumov AV, Hsung RP, Ihlen K, Wang J. Org. Lett. 2003; 5: 3935
    • 31b Hu H, Harrison TJ, Wilson PD. J. Org. Chem. 2004; 69: 3782
    • 31c See also: Ref. 12.
  • 32 Kurdyumov AV, Hsung RP. J. Am. Chem. Soc. 2006; 128: 6272
    • 33a Roll DM, Manning JK, Carter GT. J. Antibiot. 1998; 51: 635
    • 33b For fermentation studies, see: Abbanat DA, Singh MP, Greenstein M. J. Antibiot. 1998; 51: 708

      For an earlier total synthesis of hongoquercin A, see:
    • 34a Tsujimori H, Bando M, Mori K. Eur. J. Org. Chem. 2000; 297
    • 34b Tsujimori H, Mori K. Biosci. Biotechnol. Biochem. 2000; 64: 1410