Synlett 2016; 27(10): 1592-1596
DOI: 10.1055/s-0035-1561582
letter
© Georg Thieme Verlag Stuttgart · New York

Iodine-Mediated Oxidative Dehydrogenation of β-Acylamino Ketones for the Highly Stereoselective Synthesis of (Z)-β-Keto­enamides

Hong-Hong Chang
a   College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. of China   Email: gaowenchao@tyut.edu.cn
,
Fei Hu
a   College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. of China   Email: gaowenchao@tyut.edu.cn
,
Wen-Chao Gao*
a   College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. of China   Email: gaowenchao@tyut.edu.cn
,
Tao Liu
a   College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. of China   Email: gaowenchao@tyut.edu.cn
,
Xing Li
a   College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. of China   Email: gaowenchao@tyut.edu.cn
,
Wen-Long Wei
a   College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. of China   Email: gaowenchao@tyut.edu.cn
,
Yan Qiao*
b   State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, P. R. of China   Email: qiaoy@sxicc.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 14 January 2016

Accepted after revision: 26 February 2016

Publication Date:
14 March 2016 (online)


Abstract

An iodine-mediated oxidative dehydrogenation of β-acylamino ketones has been developed for the synthesis of β-ketoenamides in moderate to good yields. Only Z-isomers are accessed due to the intramolecular H-bonding interaction in the HI-elimination step.

Supporting Information

 
  • References and Notes

    • 1a Huang K, Zhang X, Geng H, Li S.-K, Zhang X. ACS Catal. 2012; 2: 1343
    • 1b Geng H, Huang K, Sun T, Li W, Zhang X, Zhou L, Wu W, Zhang X. J. Org. Chem. 2011; 76: 332
    • 1c Geng H, Zhang W, Chen J, Hou G, Zhou L, Zou Y, Wu W, Zhang X. Angew. Chem. Int. Ed. 2009; 48: 6052
    • 2a Davyt D, Entz W, Fernandez R, Mariezcurrena R, Mombru AW, Saldana J, Dominguez L, Coll J, Manta E. J. Nat. Prod. 1998; 61: 1560
    • 2b Yet L. Chem. Rev. 2003; 103: 4283
    • 3a Zheng M, Huang L, Huang H, Li X, Wu W, Jiang H. Org. Lett. 2014; 16: 5906
    • 3b James CA, DeRoy P, Duplessis M, Edwards PJ, Halmos T, Minville J, Morency L, Morin S, Simoneau B, Tremblay M, Bethell R, Cordingley M, Duan J, Lamorte L, Pelletier A, Rajotte D, Salois P, Tremblay S, Sturino CF. Bioorg. Med. Chem. Lett. 2013; 23: 2781
    • 3c Gayon E, Szymczyk M, Gérard H, Vrancken E, Campagne J.-M. J. Org. Chem. 2012; 77: 9205
    • 3d Wu J, Xu W, Yu Z.-X, Wang J. J. Am. Chem. Soc. 2015; 137: 9489
    • 3e Yamamoto S, Okamoto K, Murakoso M, Kuninobu Y, Takai K. Org. Lett. 2012; 14: 3182
    • 3f Dash J, Reissig H.-U. Chem. Eur. J. 2009; 15: 6811
    • 3g Fürstner A, Weintritt H, Hupperts A. J. Org. Chem. 1995; 60: 6637
    • 5a Kang Y.-W, Cho Y.-J, Han S.-J, Jang H.-Y. Org. Lett. 2016; 18: 272
    • 5b Kim SM, Lee D, Hong SH. Org. Lett. 2014; 16: 6168
    • 6a Lechel T, Dash J, Eidamshaus C, Brüdgam I, Lentz D, Reissig H.-U. Org. Biomol. Chem. 2010; 8: 3007
    • 6b Bera MK, Reissig H.-U. Synthesis 2010; 2129
    • 6c Eidamshaus C, Kumar R, Bera MK, Reissig H.-U. Beilstein J. Org. Chem. 2011; 7: 962
    • 7a Panda N, Jena AK, Raghavender M. ACS Catal. 2012; 2: 539
    • 7b Lee JM, Ahn D.-S, Jung DY, Lee J, Do Y, Kim SK, Chang S. J. Am. Chem. Soc. 2006; 128: 12954
    • 7c Gogoi J, Gogoi P, Boruah RC. Eur. J. Org. Chem. 2014; 3483
    • 7d Panda N, Mothkuri R. J. Org. Chem. 2012; 77: 9407
    • 7e Ding R, Zhang Q.-C, Xu Y.-H, Loh T.-P. Chem. Commun. 2014; 50: 11661
    • 8a Cherton J.-C, Desbene P.-L, Bazinet M, Lanson M, Convert O, Basselier J.-J. Can. J. Chem. 1985; 63: 86
    • 8b Cherton J.-C, Bazinet M, Bolze M.-M, Lanson M, Desbene P.-L. Can. J. Chem. 1985; 63: 2601
    • 9a Lin S, Yang Z.-Q, Kwok KH. B, Koldobskiy M, Crews CM, Danyshefsky SJ. J. Am. Chem. Soc. 2004; 126: 6347
    • 9b Sugiura M, Kumahara M, Nakajima M. Chem. Commun. 2009; 3585
  • 10 For metal-catalyzed stereoselective synthesis of (Z)-enamides, see ref. 6. For the formation of (Z)-enamides relying on base-promoted rearrangement of propargylic hydroxylamines, see ref. 3c. For the oxidation of α-amido esters to (Z)-enamides using Dess–Martin periodinate, see: Nicolaou KC, Mathison CJ. N. Angew. Chem. Int. Ed. 2005; 44: 5992
  • 11 Mphahlele MJ. Molecules 2009; 14: 5308
    • 12a Zuo Z, Xie W, Ma D. J. Am. Chem. Soc. 2010; 132: 13226
    • 12b Zuo Z, Ma D. Angew. Chem. Int. Ed. 2011; 50: 12008
    • 12c Zi W, Xie W, Ma D. J. Am. Chem. Soc. 2012; 134: 9126
    • 12d Teng M, Zi W, Ma D. Angew. Chem. Int. Ed. 2014; 53: 1814

      For selected reviews, see:
    • 13a Zhao J, Gao W, Chang H, Li X, Liu Q, Wei W. Chin. J. Org. Chem. 2014; 34: 1941
    • 13b Hu F, Gao W, Chang H, Li X, Wei W. Chin. J. Org. Chem. 2015; 35: 1848
    • 13c Finkbeiner P, Nachtsheim BJ. Synthesis 2013; 45: 979

    • For selected examples, see:
    • 13d Tian X, Song L, Li E, Wang Q, Yu W, Chang J. RSC Adv. 2015; 5: 62194
    • 14a Gao W.-C, Hu F, Huo Y.-M, Chang H.-H, Li X, Wei W.-L. Org. Lett. 2015; 17: 3914
    • 14b Gao W.-C, Zhao J.-J, Hu F, Chang H.-H, Li X, Wei W.-L. RSC Adv. 2015; 5: 25222
    • 14c Gao W.-C, Zhao J.-J, Hu F, Chang H.-H, Li X, Wei W.-L. RSC Adv. 2014; 4: 49329
    • 14d Gao W.-C, Jiang S, Wang R.-L, Zhang C. Chem. Commun. 2013; 49: 4890
    • 15a Khan AT, Parvin T, Choudhury LH. Tetrahedron 2007; 63: 5593
    • 15b Xu L.-W, Xia C.-G, Hu X.-X. Chem. Commun. 2003; 2570
  • 16 For the corresponding structures of oxazoline and oxazole derivatives, see ref. 13a. For the screening of bases and results of catalytic reaction studies, see Supporting Information.
  • 17 General Procedure for Iodine-Mediated Oxidative Dehydrogenation A 10 mL oven-dried reaction vessel was charged with 1a (53 mg, 0.2 mmol), DABCO (67 mg, 0.6 mmol), and iodine (61 mg, 0.24 mmol) in p-xylene (2.0 mL). The resulting solution was stirred at 60 °C for 5 h. After the reaction was complete, sat. Na2S2O3 aq solution (10 mL) was added to quench the reaction, and the mixture was extracted by EtOAc (3 × 10 mL). The organic layer was separated and dried over anhydrous Na2SO4. After the removal of the solvent in vacuo, the residue was purified by flash column chromatography with PE–EtOAc (9:1) to give 2a. (Z)-N-(3-Oxo-1,3-diphenylprop-1-en-1-yl)acetamide (2a) Yield 27 mg (60%); reaction time 5 h; white solid; mp 60–62 °C; Rf = 0.35 (PE–EtOAc = 4:1). 1H NMR (400 MHz, CDCl3): δ = 12.27 (s, 1 H), 7.98–7.95 (m, 2 H), 7.57 (tt, 1 H, J = 4.8, 0.8 Hz), 7.50–7.46 (m, 4 H), 7.45–7.40 (m, 3 H), 6.33 (s, 1 H), 2.25 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 191.7, 168.9, 156.3, 138.6, 136.2, 132.7, 129.8, 128.7, 128.1, 127.8, 127.4, 104.8, 25.1. ESI-HRMS: m/z calcd for C17H16NO2 [M + H]+: 266.1176; found: 266.1179.
  • 18 (Z)-Ethyl (3-Oxo-1,3-diphenylprop-1-en-1-yl)carbamate (2s) Yield 44 mg (75%); reaction time 2 h; yellow oil; Rf = 0.51 (PE–EtOAc = 9:1). 1H NMR (400 MHz, CDCl3): δ = 11.95 (s, 1 H), 7.97 (d, 2 H, J = 7.2 Hz), 7.57–7.41 (m, 8 H), 6.28 (s, 1 H), 4.13 (q, 2 H, J = 7.2 Hz), 1.26 (t, 3 H, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3): δ = 191.2, 157.0, 152.9, 138.7, 136.0, 132.5, 129.8, 128.6, 128.0, 127.8, 127.5, 103.5, 61.9, 14.2. ESI-HRMS: m/z calcd for ­C18H17NO3Na [M + Na]+: 318.1101; found: 318.1104.
    • 19a Minakata S, Morino Y, Oderaotoshi Y, Komatsu M. Org. Lett. 2006; 8: 3335
    • 19b Minakata S, Morino Y, Ide T, Oderaotoshi Y, Komatsu M. Chem. Commun. 2007; 3279