Synthesis 2016; 48(23): 4017-4037
DOI: 10.1055/s-0036-1588311
review
© Georg Thieme Verlag Stuttgart · New York

Recent Progress in Chemical Syntheses of Sphingosines and Phytosphingosines

Yangguang Gao
a   Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan­ 430056, P. R. of China
b   Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, P. R. of China
,
Xianran He
a   Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan­ 430056, P. R. of China
b   Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, P. R. of China
,
Fei Ding
a   Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan­ 430056, P. R. of China
b   Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan 430056, P. R. of China
,
Yongmin Zhang*
a   Institute for Interdisciplinary Research, Jianghan University, Wuhan Economic and Technological Development Zone, Wuhan­ 430056, P. R. of China
c   Institut Parisien de Chimie Moléculaire, CNRS UMR 8232, Université Pierre et Marie Curie-Paris 6, 4 Place Jussieu, 75005 Paris, France   Email: yongmin.zhang@upmc.fr
› Author Affiliations
Further Information

Publication History

Received: 15 May 2016

Accepted after revision: 20 June 2016

Publication Date:
10 October 2016 (online)


Abstract

Sphingolipids and their derivatives, such as glycosphingolipids and sphingomyelins, are ubiquitous in the biomembrane of eukaryotic cells, and they play pivotal roles in cell proliferation, recognition, adhesion, and signal transduction. Sphingosine is predominantly the important lipid moiety of the glycosphingolipids and sphingomyelins, while phytosphingosine is a major long-chain moiety for glycosphingolipids. Due to the significance of these two bioactive lipids, tremendous efforts have been made to synthesize sphingosine or phytosphingosine, with chiral pool approaches, chiral auxiliaries, and asymmetric reactions used to construct their contiguous stereogenic centers. This review covers the synthetic literature published from 2000–2015.

1 Introduction

2 Chiral Approach

2.1 Chirality from Sugars

2.2 Chirality from Serine and Its Derivatives

2.3 Chirality from d-ribo-Phytosphingosine

2.4 Chirality from d-Tartaric Acid and Its Diester

2.5 Chirality from Other Chiral Precursors

3 Chiral Auxiliaries

3.1 Chiral Sulfur Auxiliaries

3.2 Chiral N-Containing Auxiliaries

4 Asymmetric Reactions

4.1 Sharpless Dihydroxylation Reaction

4.2 Sharpless Epoxidation and Shi’s Epoxidation Reaction

4.3 Asymmetric Aldol Reaction

4.4 Sharpless Kinetic Resolution

4.5 Asymmetric Aminohydroxylation and Amination

5 Conclusions

 
  • References

    • 1a Merrill Jr AH, Sandhoff K. Sphingolipids: Metabolism and Cell Signaling . In Biochemistry of Lipids, Lipoprotein, and Membranes . Vance DE, Vance JE. Elsevier; New York: 2002: 373
    • 1b Chang YT, Choi J, Ding S, Prieschl EE, Baumruker T, Lee JM, Chung SK, Schultz PG. J. Am. Chem. Soc. 2002; 124: 1856
    • 1c Spiegel S, Milstein S. J. Biol. Chem. 2002; 277: 25851
    • 1d Mathias S, Pena LA, Kolesnick RN. Biochem. J. 1998; 335: 465
    • 1e Birbes H, Bawab SE, Obeid LM, Hannun YA. Adv. Enzyme Regul. 2002; 42: 113
    • 2a Hannun YA, Loomis CR, Merrill AH. Jr, Bell RM. J. Biol. Chem. 1986; 261: 12604
    • 2b Hannun Y, Bell RM. Science (Washington, D. C.) 1989; 243: 500
    • 2c Hannun Y. Science (Washington, D. C.) 1996; 274: 1855
    • 2d Vankar YD, Schmidt RR. Chem. Soc. Rev. 2000; 29: 201
    • 2e Brodesser S, Sawatzki P, Kolter T. Eur. J. Org. Chem. 2003; 2021
    • 2f Springer TA, Lasky LA. Nature (London) 1991; 349: 196
    • 2g Feizi T. Trends Biochem. Sci. 1991; 16: 84
  • 3 Thudichum JL. W. A Treatise on the Chemical Constitution of the Brain . Bailliere, Tindall, and Cox; London: 1884. new edition, Archon Books Hamden, Connecticut, USA, 1962
  • 4 Carter HE, Glick FJ, Norris WP, Phillips GE. J. Biol. Chem. 1947; 170: 285
  • 5 Shapiro D, Segal H. J. Am. Chem. Soc. 1954; 76: 5894
  • 6 Higuchi R, Kagoshima M, Komori T. Liebigs Ann. Chem. 1990; 659
  • 7 Okabe K, Keeman RW, Schmidt G. Biochem. Biophys. Res. Commun. 1968; 31: 137
  • 8 Barenholz Y, Gatt S. Biochem. Biophys. Res. Commun. 1967; 27: 319
  • 9 Karlsson KA, Samuelsson BE, Steen GO. Acta Chem. Scand. 1968; 22: 1361
  • 10 Kobayashi E, Motoki K, Yamaguchi Y, Uchida T, Fukushima H, Koezuka Y. Bioorg. Med. Chem. 1996; 4: 615
  • 11 Gonzalez-Aseguinolaza G, Kaer LV, Bergmann CC, Wilson JM, Schmieg J, Kronenberg M, Nakayama T, Taniguchi M, Koezuka Y, Tsuji M. J. Exp. Med. 2002; 195: 617
  • 12 Tamiya-Koizumi K, Murate T, Suzuki M, Simbulan CM. G, Nakagawa M, Takemura M, Furuta K, Izuta S, Yoshida S. Biochem. Mol. Biol. Int. 1997; 41: 1179
  • 13 Dickson RC, Nagiec EE, Skrzypek M, Tillman P, Wells GB, Lester RL. J. Biol. Chem. 1997; 272: 30196
    • 14a International Union of Biochemistry Biochemical Nomenclature and Related Documents. 2nd ed. Portland Press; London: 1992: 39
    • 14b http://www.chem.qmul.ac.uk/iupac/lipid/lip1n2.html (accessed Oct. 7, 2016).
    • 15a Howell AR, Ndakala AJ. Curr. Org. Chem. 2002; 6: 365
    • 15b Koskinen PM, Koskinen AM. P. Synthesis 1998; 1075
    • 15c Morales-Serna JA, Llaveria J, Díaz Y, Matheu MI, Castillón S. Curr. Org. Chem. 2010; 14: 2483
    • 15d Liao JY, Tao JH, Lin GQ, Liu DG. Tetrahedron 2005; 61: 4715
    • 15e Curfman C, Liotta D. Methods Enzymol. 1999; 311: 391
  • 16 Pandey G, Tiwari DK. Tetrahedron Lett. 2009; 50: 3296
  • 17 Banik BK, Mathur C, Wagle DR, Manhas MS, Bose AK. Tetrahedron 2000; 56: 5603
    • 18a Mettu R, Thatikonda NR, Olusegun OS, Vishvakarma R, Vaidya JR. ARKIVOC 2012; (vi): 421; http://www.arkat-usa.org/home
    • 18b Compostella F, Franchini L, Giovenzana GB, Panza L, Prosperib D, Ronchettia F. Tetrahedron: Asymmetry 2002; 13: 867
  • 19 Martinková M, Pomikalová K, Gonda J, Vilková M. Tetrahedron 2013; 69: 8228
  • 20 Chiu HY, Tzou DM, Patkar LN, Lin CC. J. Org. Chem. 2003; 68: 5788
  • 21 Lin CC, Fan GT, Fang JM. Tetrahedron Lett. 2003; 44: 5281
  • 22 Chang CW, Chen YN, Adak AK, Lin KH, Tzou DM, Lin CC. Tetrahedron 2007; 63: 4310
  • 23 Compostella F, Franchini L, Libero G, Palmisano G, Ronchettia F, Panza L. Tetrahedron 2002; 58: 8703
  • 24 Milne JE, Jarowicki K, Kocienski PJ, Alonso J. Chem. Commun. 2002; 426
  • 25 Rao GS, Chandrasekhar B, Rao BV. Tetrahedron: Asymmetry 2012; 23: 564
  • 26 Chaudhari VD, Kumar KS. A, Dhavale DD. Org. Lett. 2005; 7: 5805
  • 27 Luo SY, Thopate SR, Hsub CY, Hung SC. Tetrahedron Lett. 2002; 43: 4889
  • 28 Cai Y, Ling CC, Bundle DR. Carbohydr. Res. 2009; 344: 2120
    • 29a Duclos Jr RI. Chem. Phys. Lipids 2001; 111: 111
    • 29b Parameswar AR, Hawkins JA, Mydock LK, Sands MS, Demchenko AV. Eur. J. Org. Chem. 2010; 3269
  • 30 Schmidt RR, Zimmermann P. Tetrahedron Lett. 1986; 27: 481
  • 31 Figueroa-Pérez S, Schmidt RR. Carbohydr. Res. 2000; 328: 95
  • 32 Niu Y, Cao X, Ye XS. Helv. Chim. Acta 2008; 91: 746
  • 33 Martinková M, Pomikalová K, Gonda J. Chem. Pap. 2013; 67: 84
  • 34 Martinková M, Gonda J, Pomikalova K, Kožišek J, Kuchar J. Carbohydr. Res. 2011; 436: 1728
  • 35 Calder ED. D, Zaed AM, Sutherland A. J. Org. Chem. 2013; 78: 7223
  • 36 Perali RS, Mandava S, Chalapala S. Tetrahedron 2011; 67: 9283
  • 37 Lee JM, Lim HS, Chung SK. Tetrahedron: Asymmetry 2002; 13: 343
    • 38a Yamamoto T, Hasegawa H, Hakogi T, Katsumura S. Org. Lett. 2006; 8: 5569
    • 38b Chun J, Li G, Byun HS, Bittman R. Tetrahedron Lett. 2002; 43: 375
  • 39 Yang H, Liebeskind LS. Org. Lett. 2007; 9: 2993
  • 40 Mu Y, Jin T, Kim GW, Kim JS, Kim SS, Tian YS, Oh CY, Ham WH. Eur. J. Org. Chem. 2012; 2614
    • 41a Murakami T, Furusawa K. Tetrahedron 2002; 58: 9257
    • 41b Bhabak KP, Proksch D, Redmer S, Arenz C. Bioorg. Med. Chem. 2012; 20: 6154
    • 42a Ferjančić Z, Matović R, Bihelović F. J. Serb. Chem. Soc. 2014; 79: 627
    • 42b Sa-ei K, Montgomery J. Tetrahedron 2009; 65: 6707
  • 43 Morales-Serna JA, Sauza A, de Jesús GP, Gaviño R, de la Mora GG, Cárdenas J. Tetrahedron Lett. 2013; 54: 7111
  • 44 Jeon J, Shin M, Yoo JW, Oh JS, Bae JG, Jung SH, Kim YG. Tetrahedron Lett. 2007; 48: 1105
    • 45a Kim S, Lee S, Lee T, Ko H, Kim D. J. Org. Chem. 2006; 71: 8661
    • 45b Lee YM, Lee S, Jeon H, Baek DJ, Seo JH, Kim D, Kim S. Synthesis 2011; 867
    • 45c van den Berg RJ. B. H. N, van den Elst H, Korevaar CG. N, Aerts JM. F. G, van der Marel GA, Overkleeft HS. Eur. J. Org. Chem. 2011; 6685
  • 46 van den Berg RJ. B. H. N, Korevaar CG. N, Overkleeft HS, van der Marel GA, van Boom JH. J. Org. Chem. 2004; 69: 5699
  • 47 Ha HJ, Yoon DH, Kang LS, Hong MC, Lee WK. Bull. Korean Chem. Soc. 2009; 30: 535
  • 48 van den Berg RJ. B. H. N, Korevaar CG. N, van der Marel GA, Overkleeft HS, van Boom JH. Tetrahedron Lett. 2002; 43: 8409
  • 49 Kim S, Lee N, Lee S, Lee T, Lee YM. J. Org. Chem. 2008; 73: 1379
  • 50 Rai AN, Basu A. Org. Lett. 2004; 6: 2861
  • 51 Compostella F, Franchini L, Panza L, Prosperi D, Ronchetti F. Tetrahedron 2002; 58: 4425
  • 52 Lu XQ, Bittman R. Tetrahedron Lett. 2005; 46: 3165
  • 53 Nakamura T, Shiozaki M. Tetrahedron 2001; 57: 9087
  • 54 Merino P, Jimenez P, Tejero T. J. Org. Chem. 2006; 71: 4685
    • 55a Rao GS, Rao BV. Tetrahedron Lett. 2011; 52: 6076
    • 55b Elie A, Purushotham V, Robert WL, Haribansh KS, Amarendra BM, David CJ, Racha S, Raymond PP. J. Org. Chem. 1988; 53: 2598
    • 56a Sarabia F, Vivar-García C, García-Ruiz C, Sánchez-Ruiz A, Pino-González MS, García-Castro M, Chammaa S. Eur. J. Org. Chem. 2014; 3847
    • 56b Sarabia F, Vivar-García C, García-Castro M, García-Ruiz C, Martín-Gálvez F, Sánchez-Ruiz A, Chammaa S. Chem. Eur. J. 2012; 18: 15190
  • 57 Morales-Serna JA, Llaveria J, Díaz Y, Matheu MI, Castillón S. Org. Biomol. Chem. 2008; 6: 4502
    • 58a Xarnod C, Huang W, Ren RG, Liu RC, Wei BG. Tetrahedron 2012; 68: 6688
    • 58b Liu RC, Huang W, Ma JY, Wei BG, Lin GQ. Tetrahedron Lett. 2009; 50: 4046
  • 59 Cai Y, Ling CC, Bundle DR. Org. Biomol. Chem. 2006; 4: 1140
  • 60 Disadee W, Ishikawa T. J. Org. Chem. 2005; 70: 9399
  • 61 Venkataramasubramanian V, Kumar BS, Sudalai A. Tetrahedron: Asymmetry 2015; 26: 571
  • 62 He LL, Byun HS, Bittman R. J. Org. Chem. 2000; 65: 7618
  • 63 He LL, Byun HS, Bittman R. J. Org. Chem. 2000; 65: 7627
  • 64 Llaveria J, Díaz Y, Matheu MI, Castillón S. Org. Lett. 2009; 11: 205
    • 65a Torssell S, Somfai P. Org. Biomol. Chem. 2004; 2: 1643
    • 65b Olofsson B, Somfai P. J. Org. Chem. 2003; 68: 2514
  • 66 Righi G, Ciambrone S, D’Achille C, Leonellia A, Bonini C. Tetrahedron 2006; 62: 11821
    • 67a Enders D, Paleček J, Grondal C. Chem. Commun. 2006; 655
    • 67b Enders D, Terteryan V, Paleček J. Synthesis 2010; 2979
  • 68 Kobayashi J, Nakamura M, Mori Y, Yamashita Y, Kobayashi S. J. Am. Chem. Soc. 2004; 126: 9192
  • 69 Devi TJ, Saikia B, Barua NC. Tetrahedron 2013; 69: 3817
  • 70 Kumar P, Dubey A, Puranik VG. Org. Biomol. Chem. 2010; 8: 5074
    • 71a Abraham E, Brock EA, Candela-Lena JI, Davies SG, Georgiou M, Nicholson RL, Perkins JH, Roberts PM, Russell AJ, Sánchez-Fernández EM, Scott PM, Smith AD, Thomson JE. Org. Biomol. Chem. 2008; 6: 1665
    • 71b Abraham E, Davies SG, Millican NL, Nicholson RL, Roberts PM, Smith AD. Org. Biomol. Chem. 2008; 6: 1655
  • 72 Singh OV, Kampf DJ, Han H. Tetrahedron Lett. 2004; 45: 7239
  • 73 Hoecker J, Rudolf GC, Bächle F, Fleischer S, Lindner BD, Helmchen G. Eur. J. Org. Chem. 2013; 5149