Synthesis 2017; 49(13): 2819-2851
DOI: 10.1055/s-0036-1588423
short review
© Georg Thieme Verlag Stuttgart · New York

Current Trends towards the Synthesis of Bioactive Heterocycles and Natural Products Using 1,3-Dipolar Cycloadditions (1,3-DC) with Azomethine Ylides

H. Ali Döndas*
a   Mersin University, Faculty of Pharmacy, Yenisehir Campus 33169 Yenisehir, Mersin, Turkey
,
María de Gracia Retamosa
b   Instituto de Investigaciones Químicas (CSIC-US) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), Avda, Américo Vespucio, 49,41092 Sevilla, Spain
,
José M. Sansano
c   Departamento de Química Orgánica, Instituto de Síntesis Orgánica (ISO) and Centro de Innovación en Química Avanzada (ORFEO-CINQA), University of Alicante, 03080 Alicante, Spain   Email: yakdas25@mersin.edu.tr
› Author Affiliations
Further Information

Publication History

Received: 23 January 2017

Accepted after revision: 02 April 2017

Publication Date:
07 June 2017 (online)


Dedicated to Prof. Ronald E. Grigg

Abstract

This review summarizes the trends in the formation of complex or not so complex heterocyclic structures through 1,3-dipolar cy­cloadditions of azomethine ylides. Diastereo- and enantioselective processes as well as non-asymmetric cycloadditions constitute very important synthetic tools for achieving these compounds. This review covers the literature from 2015 through 2016 and organizes the research in terms of biologically important heterocycles and natural products from cascade 1,3-dipolar cycloadditions of azomethine ylides to the simpler forms of 1,3-dipolar cycloaddition.

1 Introduction

2 Synthesis of Spirooxindoles

3 Synthesis of Spiropyrrolidines

4 Synthesis of Spiropiperidines and Piperidines

5 Synthesis of Pyrrolidines and Fused Pyrrolidines

6 Synthesis of Pyrrolizidines and Indolizidines

7 Synthesis of Quinolone and Isoquinolines

8 Conclusions

 
  • References

    • 1a Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 565
    • 1b Huisgen R. Angew. Chem., Int. Ed. Engl. 1963; 2: 633
  • 2 Baunach M. Hertweck C. Angew. Chem. Int. Ed. 2015; 54: 12550

    • Dispiroindole derivatives are known to have antidiabetic, anticancer, antitubercular, antibacterial as well as antimicrobial activities
    • 4a Girgis AS. Eur. J. Med. Chem. 2009; 44: 91
    • 4b Ali MA. Ismail R. Choon TS. Yoon YK. Wei AC. Pandian S. Kumar RS. Osman H. Manogaran E. Bioorg. Med. Chem. Lett. 2010; 20: 7064
    • 4c Ivanenkov YA. Vasilevski SV. Beloglazkina EK. Kukushkin ME. Machulkin AE. Veselov MS. Chufarova NV. Chernyaginab ES. Vanzcool AS. Zyk NV. Skvortsov DA. Khutornenko AA. Rusanov AL. Tonevitsky AG. Dontsova OA. Majouga AG. Bioorg. Med. Chem. Lett. 2015; 25: 404
    • 4d Murugan R. Anbazhagan S. Sriman-Narayanan S. Eur. J. Med. Chem. 2009; 44: 3272
    • 4e Prasanna P. Balamurugan K. Perumal S. Yogeeswari P. Sriram D. Eur. J. Med. Chem. 2010; 45: 5653
    • 4f Karthikeyan K. Sivakumar PM. Doble M. Perumal PT. Eur. J. Med. Chem. 2010; 45: 3446
    • 4g Arun Y. Bhaskar G. Balachandran C. Ignacimuthu S. Perumal PT. Bioorg. Med. Chem. Lett. 2013; 23: 1839
  • 5 Pavlovska TL. Redkin RG. Lipson VV. Atamanuk DV. Mol. Divers. 2016; 20: 299
  • 6 Rouatbi F. Askri M. Nana F. Kirsch G. Sriram D. Yogeeswari P. Tetrahedron Lett. 2016; 57: 163
  • 7 Isatins and various primary or cyclic secondary amines formed azomethine ylides which underwent self 1,3-dipolar–[3+3] cyclizations: Xia P.-J. Sun Y.-H. Xiao J.-A. Zhou Z.-F. Wen S.-S. Xiong Y. Ou G.-C. Chen X.-Q. Yang H. J. Org. Chem. 2015; 80: 11573
  • 8 Tiwari Κ. Ν. Pandurang ΤP. Pant S. Kumar R. Tetrahedron Lett. 2016; 57: 2286
  • 9 Malini M. Periyaraja S. Shanmugam P. Tetrahedron Lett. 2015; 56: 5123
  • 10 Taghizadeh M.-J. Javidan A. Jadidi K. J. Korean Chem. Soc. 2015; 59: 205
  • 11 Li G. Wu M. Liu F. Jiang J. Synthesis 2015; 47: 3783
  • 12 Dong H. Song S. Li J. Xu C. Zhang H. Ouyang L. Bioorg. Med. Chem. Lett. 2015; 25: 3585
  • 13 Muthusamy S. Kumar SG. Tetrahedron 2016; 72: 2392
  • 14 Nayak S. Mishra SK. Bhakta S. Panda P. Baral N. Mohapatra S. Purohit CS. Satha P. Lett. Org. Chem. 2016; 13: 11
  • 15 Dhanalakshmi P. Babu SS. Thimmarayaperumal S. Shanmugam S. RSC Adv. 2015; 5: 33705
  • 16 Chornous VA. Mel’nik OY. Mel’nik DA. E. B. Rusanov EB. Vovk MV. Russ. J. Org. Chem. 2015; 51: 1423
  • 17 Barkov AY. Zimnitskiy NS. Korotaev V.-Y. Kutyashev IB. Moshkin VS. Sosnovskikh V.-Y. Tetrahedron 2016; 72: 6825
  • 18 Rao JN. S. Raghunathan R. Tetrahedron Lett. 2015; 56: 2276
  • 19 Sumesh RV. Muthu M. Almansour AI. Kumar RS. Arumugam S. Athimoolam S. Prabha EA. J. Kumar RR. ACS Comb. Sci. 2016; 18: 262
  • 20 Girgis AS. Panda SS. Aziz MN. Steel PJ. Hall CD. Katritzky AR. RSC Adv. 2015; 5: 28554
  • 21 Girgis AS. Mabied AF. Stawinski J. Hegazy L. George RF. Farag H. Shalaby E. Farag SA. New J. Chem. 2015; 39: 8017
  • 22 George RF. Panda SS. El-Shalaby AM. Srour AM. Farag IS. A. Girgis AS. RSC Adv. 2016; 6: 45434
  • 23 Girgis AS. Panda SS. Farag IS. A. El-Shabiny AM. Moustafa AM. Ismail NS. M. Pillai GG. Panda CS. Hall CD. Katritzky AR. Org. Biomol. Chem. 2015; 13: 1741
  • 24 Rao JN. S. Raghunathan R. Tetrahedron Lett. 2015; 56: 1539
  • 25 Anis’kovl AA. Kamneva YI. Zheleznova MA. Yegorova AY. Chem. Heterocycl. Compd. 2015; 51: 709
  • 26 Feng G.-L. Li Y. Geng L.-J. Zhang H.-L. Shi Y.-J. Wang K.-F. Synth. Commun. 2015; 45: 1259
  • 27 Chakraborty D. Maity A. Jain CK. Hazra A. Bharitkar YP. Jha T. Majumder HK. Roychoudhury S. Mondal NB. Med. Chem. Commun. 2015; 6: 702
  • 28 Hazra A. Mondal C. Chakraborty D. Halder AK. Bharitkar YP. Mondal SK. Banerjee S. Jha T. Mondal NB. Curr. Top. Med. Chem. 2015; 15: 1013
  • 29 Arumugam N. Almansour A. Kumar RS. Menéndez JC. Sultan MA. Karama U. Ghabbour HA. Fun HK. Molecules 2015; 20: 16142 ; http://www.mdpi.com/journal/molecules
  • 30 Kumar RS. Almansour AA. Arumugam N. Basiri A. Kia Y. Kumar RR. Aust. J. Chem. 2015; 68: 863
  • 31 Almansour AI. Arumugam N. Kumar RS. Periyasami G. Ghabbour HA. Fun HK. Molecules 2015; 20: 780 ; http://www.mdpi.com/journal/molecules
  • 32 Rajkumar V. Babu SA. Padmavathi R. Tetrahedron 2016; 72: 5578
  • 33 Poomathi N. Mayakrishnan S. Muralidharan D. Perumal PT. Tetrahedron Lett. 2015; 56: 721
  • 34 Kathirvelan D. Haribabu J. Reddy BS. R. Balachandran C. Duraipandiyan V. Bioorg. Med. Chem. Lett. 2015; 25: 389
  • 35 Bharitkar YP. Das M. Kumari N. Kumari MP. Hazra A. Bhayye SS. Natarajan R. Shah S. Chatterjee S. Mondal NB. Org. Lett. 2015; 17: 4440
  • 36 Rajeswari M. Kumari S. Khurana JM. RSC Adv. 2016; 6: 9297
  • 37 Kaur A. Kaur M. Singh B. J. Heterocycl. Chem. 2015; 52: 827
  • 38 Haddad S. Boudriga S. Akhaja TN. Raval NP. Porzio F. Soldera A. Askri M. Knorr M. Rousselin YE. Kubicki MM. Rajani D. New J. Chem. 2015; 39: 520
  • 39 Haddad S. Boudriga S. Porzio F. Soldera A. Askri M. Knorr M. Rousselin Y. Kubicki MM. Golz C. Strohmann C. J. Org. Chem. 2015; 80: 9064
  • 40 Bharitkar YP. Kanhar S. Suneel N. Mondal SK. Hazra A. Mondal NB. Mol. Divers. 2015; 19: 251
  • 41 Sun J. Chen L. Gong H. Yan C.-G. Org. Biomol. Chem. 2015; 13: 5905
  • 42 Ponnuchamy S. Sumesh RV. Kumar RR. Tetrahedron Lett. 2015; 56: 4374
  • 43 Dandia A. Singh R. Khan S. Kumari S. Soni P. Tetrahedron Lett. 2015; 56: 4438
  • 44 Taghizadeh MJ. Javidan A. Keshipour S. Chem. Heterocycl. Compd. 2015; 51: 467
  • 45 Mathusalini S. Arasakumar T. Lakshmi K. Lin C.-H. Mohan PS. Ramnath MG. Thirugnanasampandan R. New J. Chem. 2016; 40: 5164
  • 46 Yu B. Sun X.-N. Shi X.-J. Qi P.-P. Zheng Y.-C. Yu D.-Q. Liu H.-M. Steroids 2015; 102: 92
  • 47 Wang Y.-M. Zhang H.-H. Li C. Fan T. Shi F. Chem. Commun. 2016; 52: 1804
  • 48 Al-As’ad RM. El-Abadelah MM. Sabri SS. Zahra JA. Awwadi FF. Voelter W. Monatsh Chem. 2015; 146: 621
  • 49 Dai W. Jiang X.-L. Wu Q. Shi F. Tu S.-J. J. Org. Chem. 2015; 80: 5737
  • 50 Wang CS. Zhu RY. Zheng J. Shi F. Tu SJ. J. Org. Chem. 2015; 80: 512
  • 51 Yang F. Sun Z. Gao H. Yan CG. RSC Adv. 2015; 5: 32786
  • 52 Thirumala PP. Krishnan R. Emanathan G. Doraiswamy M. J. Chem. Sci. (Berlin, Ger.) 2015; 127: 7
  • 53 Hu W.-Q. Cui Y.-S. Wu Z.-J. Zhang C.-B. Dou P.-H. Niu S.-Y. Fu J.-Y. Liu Y. RSC Adv. 2015; 5: 70910
  • 54 Liu F.-H. Song Y.-B. Zhai L.-J. Lia M. J. Heterocycl. Chem. 2015; 52: 322
  • 55 Hamzehloueian M. Yaghoub-Sarrafi Y. Aghaeib Z. RSC Adv. 2015; 5: 76368
  • 56 Malathi K. Jeyachandran V. Kalaiselvan K. Kumar RR. Synth. Commun. 2015; 45: 503
  • 57 Gavaskar D. Suresh-Babu AR. Raghunathan R. Dharani M. Balasubramanian S. Steroids 2016; 109: 1
  • 58 Yang W.-L. Liu Y.-Z. Luo S. Yu X. Fossey JS. Deng W.-P. Chem. Commun. 2015; 51: 9212
  • 59 Conde E. Rivilla I. Larumbe A. Cossío FP. J. Org. Chem. 2015; 80: 11755
  • 60 Cayuelas A. Ortiz R. Nájera C. Sansano JM. Larrañaga O. de Cózar A. Cossío FP. Org. Lett. 2016; 18: 2926
  • 61 The general trend of 1,3-DC involving nitroalkenes is the formation of the exo-cycloadducts.
  • 62 Liu T. Li Q. He Z. Zhang J. Wang C. Chin. J. Catal. 2015; 36: 68
  • 63 Wu Y. Liu H. Zhang L. Sun Z. Xiao Y. Huang J. Wang M. Guo H. RSC Adv. 2016; 6: 73547
  • 64 He Z.-L. Sheong FK. Li Q.-H. Lin Z. Wang C.-J. Org. Lett. 2015; 17: 1365
  • 65 Vidadala SR. Golz C. Strohmann C. Daniliuc CG. Waldmann H. Angew. Chem. Int. Ed. 2015; 54: 651
  • 66 Yang W.-L. Li C.-Y. Qin W.-J. Tang F.-F. Yu X. Deng W.-P. ACS Catal. 2016; 6: 5685
  • 67 Arasasppan H. Thangamuthu MD. J. Heterocycl. Chem. 2016; 53: 313
  • 68 The methodology consisting in a one-pot copper iodide mediated 1,3-DC of O-alkyl azides derived from salicylaldehyde with O-propargyl nitroolefin bonded to the glucose unit, followed by the described 1,3-DC of the thermally generated azomethine ylide, gave slightly better yields (74–81%): Rao JN. S. Raghunathan R. Tetrahedron Lett. 2016; 56: 2669
  • 69 Oliveira-Udry GA. Repetto E. Vega DR. Varela O. J. Org. Chem. 2016; 81: 4179
  • 70 Zhang WJ. Luo X. Meng X. Li Z. Tetrahedron Lett. 2016; 57: 1981
  • 71 Kudryavtsev KV. Ivantcova PM. Muhle-Goll C. Churakov AV. Sokolov MN. Dyuba AV. Arutyunyan AM. Howard JA. K. Yu C.-C. Guh J.-H. Zefirov NS. Bräse S. Org. Lett. 2015; 17: 6178
  • 72 Kudryavtsev KV. Mantsyzov AB. Ivantcova PM. Sokolov MN. Churakov AV. Bräse S. Zefirov NS. Polshakov VI. Org. Lett. 2016; 18: 4698
  • 73 Usachev SA. Popova NV. Moshkin VS. Sosnovskikh VY. Chem. Heterocycl. Compd. 2015; 51: 913
  • 74 Potowski M. Golz C. Strohmann C. Antonchick AP. Waldmann H. Bioorg. Med. Chem. 2015; 23: 2895
  • 75 Buev EM. Moshkin AS. Sosnovskikh VY. Tetrahedron Lett. 2015; 56: 6590
  • 76 Yang W. Guanyu Q. Honglei L. Lei Z. Zhanhu S. Yumei X. Hongchao G. RSC Adv. 2015; 5: 84290
  • 77 Wang C.-S. Zhu R.-Y. Zhang Y.-C. Shi F. Chem. Commun. 2015; 51: 11798
  • 78 Mantenuto S. Cayuelas A. Favi G. Attanasi OA. Mantellini F. Nájera C. Sansano JM. Eur. J. Org. Chem. 2016; 4144
  • 79 Zhang X. Zhi S. Wang W. Liu S. Jasinskid JP. Zhang WA. Green Chem. 2016; 18: 2642
  • 80 Semenyuk YP. Kochubei AS. Morozov PG. Burov ON. Kletskii ME. Kurbatov SV. Chem. Heterocycl. Compd. 2015; 50: 1731
  • 81 Swain SP. Shih Y.-C. Tsay S.-C. Jacob J. Lin C.-C. Hwang KC. Horng J.-C. Hwu JR. Angew. Chem. Int. Ed. 2015; 54: 9926
  • 82 Ma D. Cheng H. Huang C. Xu L. Tetrahedron Lett. 2015; 56: 2492
  • 83 Costa PR. R. Sansano JM. Cossío U. Barcellos JC. F. Dias AG. Nájera C. Arrieta A. de Cózar A. Cossío FP. Eur. J. Org. Chem. 2015; 4689
  • 84 Craven P. Aimon A. Dowa M. Fleury-Bregeot N. Guilleux R. Morgentin R. Roche D. Kalliokoski T. Foster R. Marsden SP. Nelson A. Bioorg. Med. Chem. 2015; 23: 2629
  • 85 Xie H. Gong B. Zhong X. Cui H. Xiang J. Chem. Heterocycl. Compd. 2016; 52: 484
  • 86 Pavan-Kumar CS. Harsha KB. Sandhya NC. Ramesha AB. Mantelingu K. Rangappa KS. New J. Chem. 2015; 39: 8397
  • 87 Cardoso AL. Henriques MS. C. Paixão JA. Pinho e Melo TM. V. D. J. Org. Chem. 2016; 81: 9028
  • 88 Laia FM. R. Pinho e Melo TM. V. D. Synthesis 2015; 47: 2781
  • 89 Vidadala SR. Waldmann H. Tetrahedron Lett. 2015; 56: 3358
  • 90 Pathak RB. Dobson BC. Ghosh N. Ageel KA. Alshawish M. Saruengkhanphasit R. Coldham I. Org. Biomol. Chem. 2015; 13: 3331
  • 91 Huang P.-Q. Lang Q.-W. Hu X.-N. J. Org. Chem. 2016; 81: 10227
  • 92 Buev EM. Moshkin VS. Sosnovskikh VY. Org. Lett. 2016; 18: 1764
  • 93 Meng J. Wu D. Shi Y. Yu X. Deng W.-P. Tetrahedron 2015; 71: 1074
  • 94 Ito S. Tokimaru Y. Nozaki K. Angew. Chem. Int. Ed. 2015; 54: 7256
  • 95 Santos H. Distiller A. D’Souza AM. Arnoux Q. White JM. Meyer AG. Ryan JH. Org. Chem. Front. 2015; 2: 705
  • 96 Falkowska E. Tognetti V. Joubert L. Jubault P. Bouillon J.-P. Pannecoucke X. RSC Adv. 2015; 5: 6864
  • 97 Izquierdo C. Esteban F. García-Ruano JL. Fraile A. Alemán J. Org. Lett. 2016; 18: 92
  • 98 Markitanov YN. Timoshenko VM. Shermolovich YG. Mykhalchuk VL. Grafova IA. Grafov AV. Chem. Heterocycl. Compd. 2016; 52: 503
  • 99 McAlpine I. Tran-Dube M. Wang F. Scales S. Matthews J. Collins MR. Nair SK. Nguyen M. Bian J. Alsina LM. Sun J. Zhong J. Warmus JS. O’Neill BT. J. Org. Chem. 2015; 80: 7266
  • 100 Mancebo-Aracil J. Cayuelas A. Nájera C. Sansano JM. Tetrahedron 2015; 71: 8804
  • 101 Mancebo-Aracil J. Nájera C. Sansano JM. Tetrahedron: Asymmetry 2015; 26: 674
  • 102 Cayuelas A. Larrañaga O. Nájera C. Sansano JM. de Cózar A. Cossío FP. Tetrahedron 2016; 72: 6043
  • 103 Liu HC. Liu K. Xue ZY. He ZL. Wang CJ. Org. Lett. 2015; 17: 5440
  • 104 Liu H.-C. Tao H.-Y. Cong H. Wang C.-J. J. Org. Chem. 2016; 81: 3752
  • 105 Das T. Saha P. Singh VK. Org. Lett. 2015; 17: 5088
  • 106 Liu K. Xiong Y. Wang Z.-F. Tao H.-Y. Wang C.-J. Chem. Commun. 2016; 52: 9458
  • 107 Tang L.-W. Zhao B.-J. Dai L. Zhang M. Zhou Z.-M. Chem. Asian J. 2016; 11: 2470
  • 108 He F.-S. Zhu H. Wang Z. Gao M. Yu X. Deng W.-P. Org. Lett. 2015; 17: 4988
  • 109 Wang Z. Yu X. Tian B.-X. Payne DT. Yang W.-L. Liu Y.-Z. Fossey JS. Deng W.-P. Chem.–Eur. J. 2015; 21: 10457
  • 110 Kimura M. Matsuda Y. Koizumi A. Tokumitsu C. Tokoro Y. Fukuzawa S.-I. Tetrahedron 2016; 72: 2666

    • Very similar work using a chiral ferrocenyl-oxazoline-phosphine ligand with an imidazolium unit was reported. The study of its recyclability was an interesting task:
    • 111a Dai L. Xu D. Dong X. Zhou Z. Tetrahedron: Asymmetry 2015; 26: 350

    • For enantioselective 1,3-DC with alkylidenemalonates with these copper(II)·ligand catalysts:
    • 111b Dai L. Xu D. Tang L.-W. Zhou Z.-M. ChemCatChem 2015; 7: 1078
  • 112 Gerten AL. Stanley LM. Org. Chem. Front. 2016; 3: 339
  • 113 Ponce A. Alonso I. Adrio J. Carretero JC. Chem.–Eur. J. 2016; 22: 4952
  • 114 Potowski M. Merten C. Antonchick AP. Waldmann H. Chem.–Eur. J. 2015; 21: 4913
  • 115 González-Esguevillas M. Pascual-Escudero A. Adrio J. Carretero JC. Chem.–Eur. J. 2015; 21: 4561
  • 116 Arpa EM. González-Esguevillas M. Pascual-Escudero A. Adrio J. Carretero JC. J. Org. Chem. 2016; 81: 6128
  • 117 Wang H. Deng Q. Zhou Z. Hu S. Liu Z. Zhou L.-Y. Org. Lett. 2016; 18: 404
  • 118 Chiral ferrocenyl-P,S-ligands were studied in these 1,3-DC: Han F.-Z. Yu S.-B. Zhang C. Hu X.-P. Tetrahedron 2016; 72: 2616
  • 119 Ugarriza I. Uria U. Reyes E. Carrillo ML. Vicario JL. Asymmetric Catal. 2015; 2: 26 ; https://www.degruyter.com/view/j/asorg
  • 120 Tang F.-F. Yang W.-L. Yu X. Deng W.-P. Catal. Sci. Technol. 2015; 5: 3568
  • 121 Lauridsen VH. Ibsen L. Blom J. Jørgensen KA. Chem.–Eur. J. 2016; 22: 3259
  • 122 Manjappa KB. Peng Y.-T. Jhang W.-F. Yang D.-Y. Tetrahedron 2016; 72: 853
  • 123 Mancebo-Aracil J. Nájera C. Castelló LM. Sansano JM. Larrañaga O. de Cózar A. Cossío FP. Tetrahedron 2015; 71: 9645
  • 124 Gayen B. Banerji A. Dhara K. Synth. Commun. 2016; 46: 293
  • 125 Hunter J. Pask CM. Sridharan V. Tetrahedron Lett. 2016; 57: 2774
  • 126 Ohyama T. Uchida M. Kusama H. Iwasawa N. Chem. Asian J. 2015; 10: 1850
  • 127 Pandey G. Burugu SK. Singh P. Org. Lett. 2016; 18: 1558
  • 128 Yamada R. Adachi Y. Yokoshima S. Fukuyama T. Angew. Chem. Int. Ed. 2016; 55: 6067
  • 129 Boudreault J. Lévesque F. Bélanger G. J. Org. Chem. 2016; 81: 9247
  • 130 Giampa GM. Fang J. Brewer M. Org. Lett. 2016; 18: 3952
  • 131 Chen S. Bacauanu V. Knecht T. Mercado BQ. Bergman RG. Ellman JA. J. Am. Chem. Soc. 2016; 138: 12664
  • 132 Bakthadoss M. Srinivasan J. Vinayagam V. Org. Biomol. Chem. 2015; 13: 2870
  • 133 Sugimoto K. Hoshiba Y. Tsuge K. Matsuya Y. Synthesis 2016; 48: 1855
  • 134 Xu Y. Liao Y. Lin L. Zhou Y. Li J. Liu X. Feng X. ACS Catal. 2016; 6: 589
  • 135 Enantioselective processes were efficiently optimized in the presence of chiral Cu(MeCN)4BF4·Pri-PhosFerrox complex (10 mol%): Yuan C. Liu H. Gao Z. Zhou L. Feng Y. Xiao Y. Guo H. Org. Lett. 2015; 17: 26
  • 136 Yavari I. Naeimabadi M. Hosseinpour R. Halvagar MR. A. Synlett 2016; 27: 2601
  • 137 Li F. Chen J. Hou Y. Li Y. Wu XY. Tong X. Org. Lett. 2015; 17: 5376