Synlett 2018; 29(11): 1485-1490
DOI: 10.1055/s-0037-1609757
letter
© Georg Thieme Verlag Stuttgart · New York

Copper-Catalyzed Oxidative Dimerization of 2-Oxindoles under Base-Free Conditions

Yi-Ling Huang
,
Wen-Hui Bao
,
Wei-Wei Ying
,
Wei-Ting Chen
,
Le-Han Gao
,
Xin-Ye Wang
,
Gan-Ping Chen
,
Guo-Ping Ge
,
Wen-Ting Wei*
This research is sponsored by the Natural Science Foundation of Zhejiang Province (No. LQ18B020002), education foundation of Zhejiang Province (No. Y201737123), research funds of NBU (No. ZX2016000706), foundation of Ningbo University (No. XYL17009), and the K. C. Wong Magna Fund in Ningbo University.
Further Information

Publication History

Received: 05 January 2018

Accepted after revision: 15 April 2018

Publication Date:
16 May 2018 (online)


These authors contributed equally to this work

Abstract

A practical copper-catalyzed oxidative dimerization of 2-oxindoles using di-tert-butyl peroxide as the radical initiator under base-free conditions was achieved, which not only provided an efficient route to prepare various 3,3′-bioxindoles, but also represented a simple strategy for C(sp3)–H functionalization/C–C bond formation. A radical mechanism was proposed based on the reaction results and controlling experiments.

Supporting Information

 
  • References and Notes


    • For selected examples, see:
    • 1a De S. Das MK. Roy A. Bisai A. J. Org. Chem. 2016; 81: 12258
    • 1b Kinthada LK. Medisetty SR. Parida A. Babu KN. Bisa A. J. Org. Chem. 2017; 82: 8548
    • 1c Tang ZK. Shi Y. Mao HB. Zhu XB. Li WP. Cheng YX. Zheng W.-H. Zhu CJ. Org. Biomol. Chem. 2014; 12: 6085

      For selected examples, see:
    • 2a Fang C.-L. Horne S. Taylor N. Rodrigo R. J. Am. Chem. Soc. 1994; 116: 9480
    • 2b Overman LE. Paone DV. Stearns BA. J. Am. Chem. Soc. 1999; 121: 7702
    • 2c Guo C. Song J. Huang J.-Z. Chen P.-H. Luo S.-W. Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 1046
    • 2d Liu R.-R. Zhang J.-L. Org. Lett. 2013; 15: 2266
    • 2e Trost BM. Osipov M. Angew. Chem. Int. Ed. 2013; 52: 9176

      For selected examples, see:
    • 3a Overman LE. Peterson EA. Angew. Chem. Int. Ed. 2003; 42: 2525
    • 3b Hoyt SB. Overman LE. Org. Lett. 2000; 2: 3241
    • 3c Menozzi C. Dalko PI. Cossy J. Heterocycles 2007; 72: 199
  • 4 Ghosh S. Chaudhuri S. Bisai A. Org. Lett. 2015; 17: 1373
  • 5 Jia W.-L. He J. Yang J.-J. Gao X.-W. Liu Q. Wu L.-Z. J. Org. Chem. 2016; 81: 7172

    • For one reviews, see:
    • 6a Guo X.-X. Gu D.-W. Wu ZX. Zhang WB. Chem. Rev. 2015; 115: 1622

    • For selected examples, see:
    • 6b Kong LK. Wang MD. Zhang FF. Xu MR. Li YZ. Org. Lett. 2016; 18: 6124
    • 6c Shang M. Wang H.-L. Sun S.-Z. Dai H.-X. Yu J.-Q. J. Am. Chem. Soc. 2014; 136: 11590
    • 6d Qin G. Chen X. Yang L. Huang H. ACS Catal. 2015; 5: 2882
    • 6e Hu M. Zou H.-X. Song R.-J. Xiang J.-N. Li J.-H. Org. Lett. 2016; 18: 6460

      For selected examples, see:
    • 7a Li J.-F. Wei Z.-Z. Wang Y.-Q. Ye MC. Green Chem. 2017; 19: 4498
    • 7b Upadhyaya K. Thakur RK. Shukla SK. Tripathi RP. J. Org. Chem. 2016; 81: 5046
    • 7c Hu GB. Shan CK. Chen WZ. Xu PX. Gao YX. Zhao YF. Org. Lett. 2016; 18: 6066
    • 7d Upadhyaya K. Thakur RK. Shukla SK. Tripathi RP. J. Org. Chem. 2016; 81: 5046
    • 7e Nerush A. Vogt M. Gellrich U. Leitus G. Ben-David Y. Milstein D. J. Am. Chem. Soc. 2016; 138: 6985
    • 8a Wei W.-T. Zhu W.-M. Ying W.-W. Wang Y.-N. Bao W.-H. Gao L.-H. Luo Y.-J. Liang HZ. Adv. Synth. Catal. 2017; 359: 3551
    • 8b Wei W.-T. Zhu W.-M. Ying W.-W. Wu Y. Huang Y.-L. Liang HZ. Org. Biomol. Chem. 2017; 15: 5254
    • 8c Wei W.-T. Ying W.-W. Zhu W.-M. Wu Y. Huang Y.-L. Cao Y.-Q. Wang Y.-N. Liang HZ. Synlett 2017; 28: 2307
    • 8d Ying W.-W. Zhu W.-M. Liang HZ. Wei W.-T. Synlett 2018; 29: 215
    • 8e Ying W.-W. Zhu W.-M. Gao ZH. Liang HZ. Wei W.-T. Synlett 2018; 29: 663
    • 8f Zhu W.-M. Bao W.-H. Ying W.-W. Chen W.-T. Huang Y.-L. Ge G.-P. Chen G.-P. Wei W.-T. Asian J. Org. Chem. 2018; 7: 337
  • 9 General Procedure To a Schlenk tube were added 2-oxindoles 1 (0.3 mmol), Cu(OAc)2 (0.03 mmol), DTBP (0.6 mmol), and 1,4-dioxane (2 mL). Then the tube was stirred at 120 °C under air for the indicated time until complete consumption of starting material as monitored by TLC analysis. After the reaction was finished, the solution was concentrated under reduced pressure, and the mixture was purified by flash column chromatography over silica gel (hexane/ethyl acetate) to afford the desired products 2 and was analyzed by 1H NMR and 13C NMR spectroscopy and HRMS (see Supporting Information). Typical Data for Representative Compound – 3,3′-Dimethyl-[3,3′-biindoline]-2,2′-dione (2a) d.r. = 19:1, brown solid (0.0701 g, 80% yield). 1H NMR (400 MHz, DMSO-d 6): δ = 10.48 (s, 1.9 H), 10.31 (s, 0.1 H), 8.01 (d, J = 3.2 Hz, 0.1 H), 7.80 (t, J = 5.1 Hz, 0.1 H), 7.40 (d, J = 1.6 Hz, 0.1 H), 7.33 (d, J = 7.6 Hz, 0.1 H), 7.09 (d, J = 7.6 Hz, 1.9 H), 6.96 (t, J = 7.6 Hz, 1.9 H), 6.78 (t, J = 7.2 Hz, 1.9 H), 6.54 (d, J = 7.6 Hz, 1.9 H), 1.58 (s, 5.7 H), 1.55 (s, 0.3 H).13C NMR (100 MHz, DMSO-d 6): δ = 179.8, 141.4, 132.3, 128.3, 123.4, 121.5, 109.4, 50.4, 17.6. HRMS (ESI): m/z calcd for C18H17N2O2 + [M + H]+: 293.1285; found: 293.1284.
    • 10a Tran BL. Driess M. Hartwig JF. J. Am. Chem. Soc. 2014; 136: 17292
    • 10b Bras JL. Muzart J. Chem. Rev. 2011; 111: 1170
    • 10c Cui Z. Shang X. Shao X.-F. Liu Z.-Q. Chem. Sci. 2012; 3: 2853
  • 11 Wang C.-Y. Song R.-J. Wei W.-T. Fan J.-H. Li J.-H. Chem. Commun. 2015; 51: 2361
  • 12 Manna S. Antonchick AP. Angew. Chem. Int. Ed. 2015; 54: 14845
  • 13 Conde A. Vilella L. Balcells D. Díaz-Requejo MM. Lledós A. Pérez PJ. J. Am. Chem. Soc. 2013; 135: 3887