Synthesis 2018; 50(15): 2878-2886
DOI: 10.1055/s-0037-1610089
feature
© Georg Thieme Verlag Stuttgart · New York

Concise and Environmentally Friendly Asymmetric Total Synthesis of the Putative Structure of a Biologically Active 3-Hydroxy-2-piperidone Alkaloid

Julio Romero-Ibañez
Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México   Email: fernando.sartillo@correo.buap.mx
,
Silvano Cruz-Gregorio
Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México   Email: fernando.sartillo@correo.buap.mx
,
Leticia Quintero
Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México   Email: fernando.sartillo@correo.buap.mx
,
Centro de Investigación de la Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla (BUAP), 14 Sur Esq. San Claudio, Col. San Manuel, 72570 Puebla, México   Email: fernando.sartillo@correo.buap.mx
› Author Affiliations
Financial support was provided by CONACyT (project number: 255891) and the Marcos Moshinsky Foundation and BUAP-VIEP.
Further Information

Publication History

Received: 10 March 2018

Accepted after revision: 11 May 2018

Publication Date:
26 June 2018 (online)


Abstract

An asymmetric total synthesis of stereoisomers of a putative structure of 3-hydroxy-2-piperidone alkaloid derivative is described. This route is not only concise and efficient but also is achieved under an environmentally friendly approach. To this end, a direct and double C–H oxidation reaction of simple benzylated piperidine and Baker’s yeast reduction of a carbonyl group allowed the rapid access to the optically enriched (S)-1-benzyl-3-hydroxy-2-piperidone in only three steps. The NMR data agreed with those obtained in the first total synthesis (and in discrepancy with the natural product), however, optical rotation did not match with both neither the natural and synthetic material.

Supporting Information

 
  • References

  • 1 Wang Q.-X. Li S.-F. Zhao F. Dai H.-Q. Bao L. Ding R. Gao H. Zhang LX. Wen H.-A. Liu H.-W. Fitoterapia 2011; 82: 777
  • 2 Krishna PR. Kumar PV. A. Mallula VS. Ramakrishna KV. S. Tetrahedron 2013; 69: 2319
  • 3 For instance, optically pure 3-hydroxy-2-piperidones are obtained in six steps from δ-valerolactone under harsh conditions; see: Kamal A. Ramana KV. Ramana AV. Babu AH. Tetrahedron: Asymmetry 2003; 14: 2587
  • 4 Neises B. Steglich W. Angew. Chem., Int. Ed. Engl. 1978; 17: 522
  • 5 Osorio-Nieto U. Chamorro-Arenas D. Quintero L. Höpfl H. Sartillo-Piscil F. J. Org. Chem. 2016; 81: 8625
  • 6 Mitsunobu O. Synthesis 1981; 1
  • 7 Tojo G. Fernández M. Oxidation of Alcohols to Aldehydes and Ketones . Springer; New York: 2010
  • 8 Dess DB. Martin JC. J. Org. Chem. 1983; 48: 4155
  • 9 Okada T. Asawa T. Sugiyama Y. Kirihara M. Iwai T. Kimura Y. Synlett 2014; 596
  • 10 Frigerio M. Santagostino M. Tetrahedron Lett. 1994; 35: 8019
  • 11 Dutton FE. Lee BH. Johnson SS. Coscarelli EM. Lee PH. J. Med. Chem. 2003; 46: 2057
  • 12 Enantiomeric excess was determined by HPLC.
  • 13 Feng C-G. Chen J. Ye JL. Ruan YP. Zheng X. Huang P.-Q. Tetrahedron 2006; 62: 7459
  • 14 Fogassy K. Harmat V. Böcskei Z. Tárkányi G. Tóke L. Faigl F. Tetrahedron: Asymmetry 2000; 11: 4771
  • 15 See Supporting Information.
  • 16 Hartmann M. Li Y. Studer A. J. Am. Chem. Soc. 2012; 134: 16516
  • 17 Bailey WF. Bobbitt JM. Wiberg KB. J. Org. Chem. 2007; 72: 4504
  • 18 Tebben L. Studer A. Angew. Chem. Int. Ed. 2011; 50: 5034
  • 19 Wijdeven MA. Willemsen J. Rutjes FP. J. T. Eur. J. Org. Chem. 2010; 2831
  • 20 Dragutan I. Dragutan V. Mitan C. Vosloo HC. M. Deluade L. Demonceau A. Beilstein J. Org. Chem. 2011; 7: 699
  • 21 Das S. Addis D. Zhou S. Junge K. Beller M. J. Am. Chem. Soc. 2010; 132: 1770