Synthesis 2019; 51(02): 421-432
DOI: 10.1055/s-0037-1610274
paper
© Georg Thieme Verlag Stuttgart · New York

A General Protocol for the Synthesis of H-α-Hydroxyphosphinates

Jade Dussart
,
Université Paris 13, Sorbonne Paris Cité, Laboratoire CSPBAT, CNRS UMR 7244, 93017 Bobigny Cedex, France   Email: julia.deschamp@univ-paris13.fr   Email: marc.lecouvey@univ-paris13.fr
,
Maelle Monteil
,
Olivier Gager
,
Evelyne Migianu-Griffoni
,
Marc Lecouvey*
Université Paris 13, Sorbonne Paris Cité, Laboratoire CSPBAT, CNRS UMR 7244, 93017 Bobigny Cedex, France   Email: julia.deschamp@univ-paris13.fr   Email: marc.lecouvey@univ-paris13.fr
› Author Affiliations
Université Paris 13, Sorbonne Paris Cité, Centre National de la Recherche Scientifique (CNRS), Ministère de l’Enseignement Supérieur et de la Recherche (MESR), and GDR Phosphore (CNRS) are gratefully acknowledged for financial support.
Further Information

Publication History

Received: 03 August 2018

Accepted: 20 August 2018

Publication Date:
05 September 2018 (online)


Abstract

A general synthetic procedure was developed for H-α-hydroxyphosphinates via Abramov reaction. The present work is a complementary study to those reported till now. This methodology has the advantage that it can be applied to various aliphatic and (hetero)aromatic substrates. The H-α-hydroxyphosphinates were easily purified and obtained in good to excellent yields in shorter times. A 31P NMR spectroscopy study has shown that only 2 equivalents of a silylating agent were required.

Supporting Information

 
  • References

  • 1 Virieux D. Volle JN. Bakalara N. Pirat JL. Top. Curr. Chem. 2015; 360: 39
  • 2 Collinsová M. Jirácek J. Curr. Med. Chem. 2000; 7: 629
  • 3 Grams F. Dive V. Yiotakis A. Yiallouros I. Vassiliou S. Zwilling R. Bode W. Stocker W. Nat. Struct. Biol. 1996; 3: 671
    • 4a Abdel-Meguid SS. Zhao B. Murthy KH. M. Winborne E. Choi J.-K. DesJarlais RL. Minnich MD. Culp JS. Debouck C. Tomashek TA. Jr. Meek TD. Dreyer GB. Biochemistry 1993; 32: 7972
    • 4b Dreyer GB. Metcalf BW. Tomaszek TA. Jr. Carr TJ. Chandler AC. I. Hyland L. Fakhoury SA. Magaard VW. Moore ML. Strickler JE. Debouck C. Meek TD. Proc. Natl. Acad. Sci. U.S.A. 1989; 86: 9752
    • 5a Vassiliou S. Weglarz-Tomczak E. Berlicki L. Pawelczak M. Nocek B. Mulligan R. Joachimiak A. Mucha A. J. Med. Chem. 2014; 57: 8140
    • 5b Weglarz-Tomczak E. Vassiliou S. Mucha A. Bioorg. Med. Chem. Lett. 2016; 26: 4122
    • 5c Bianchini G. Aschi M. Cavicchio G. Crucianelli M. Preziuso S. Gallina C. Nastari A. Gavuzzo E. Mazza F. Bioorg. Med. Chem. 2005; 13: 4740
    • 5d Skinner-Adams TS. Lowther J. Teuscher F. Stack CM. Grembecka J. Mucha A. Kafarski P. Trenholme KR. Dalton JP. Gardiner DL. J. Med. Chem. 2007; 50: 6024
    • 5e Oza SL. Chen S. Wyllie S. Coward JK. Fairlamb AH. FEBS J. 2008; 275: 5408
    • 6a Deprele S. Montchamp J.-L. J. Am. Chem. Soc. 2002; 124: 9386
    • 6b Bartley DM. Coward JK. J. Org. Chem. 2005; 70: 6757
    • 6c Selvam C. Goudet C. Oueslati N. Pin J.-P. Acher FC. J. Med. Chem. 2007; 50: 4656
    • 6d Selvam C. Oueslati N. Lemasson IA. Brabet I. Rigault D. Courtiol T. Cesarini S. Triballeau N. Bertrand H.-O. Goudet C. Pin J.-P. Acher FC. J. Med. Chem. 2010; 53: 2797
  • 8 Montchamp J.-L. J. Organomet. Chem. 2005; For a general review, see: 690: 2388
    • 9a Boyd EA. Regan AC. Tetrahedron Lett. 1994; 35: 4223
    • 9b Chen S. Lin C.-H. Walsh CT. Coward JK. Bioorg. Med. Chem. Lett. 1997; 7: 505
    • 9c Virieux D. Cristau HJ. Hervé A. Loiseau F. Synthesis 2003; 2216
    • 9d Wang G. Sakthivel K. Rajappan V. Bruice TW. Tucker K. Fagan P. Brooks JL. Hurd T. Leeds JM. Cook PD. Nucleosides, Nucleotides Nucleic Acids 2004; 23: 317
    • 9e Bianchini G. Aschi M. Cavicchio G. Crucianelli M. Preziuso S. Gallina C. Nastari A. Gavuzzo E. Mazza F. Bioorg. Med. Chem. 2005; 13: 4740
    • 9f Bartley DM. Coward JK. J. Org. Chem. 2005; 70: 6757
    • 9g Prishchenko AA. Livantsov MV. Novikova OP. Livantsova LI. Petrosyan VS. Heteroat. Chem. 2010; 21: 361
    • 9h Radai Z. Keglevich G. Molecules 2018; 23: 1493
    • 10a Hata T. Mori H. Sekine M. Chem. Lett. 1977; 1431
    • 10b Majeswski P. Synthesis 1987; 555
    • 10c Vysotskii VI. Levan’kov SV. Prikhod’ko YV. Zh. Obshch. Khim. 1989; 59: 2223
    • 10d Cox PB. Loh VJ. M. Monteils C. Baxter AD. Boyd EA. Tetrahedron Lett. 2001; 42: 125
    • 10e Prishchenko AA. Livantsov MV. Novikova OP. Livantsova LI. Shpakovskii DB. Milaeva ER. Russ. J. Gen. Chem. 2005; 75: 1669
    • 10f Prishchenko AA. Livantsov MV. Novikova OP. Livantsova LI. Petrosyan VS. Heteroat. Chem. 2008; 19: 352
    • 10g Prishchenko AA. Livantsov MV. Novikova OP. Livantsova LI. Petrosyan VS. Heteroat. Chem. 2012; 23: 32
    • 10h Selvam C. Acher F. Curr. Org. Synth. 2015; 12: 168
    • 12a Thottathil JK. Ryono DE. Przybyla CA. Moniot JL. Neubeck R. Tetrahedron Lett. 1984; 25: 4741
    • 12b Boyd EA. Corless M. James K. Regan AC. Tetrahedron Lett. 1990; 31: 2933
    • 12c Boyd EA. Regan AC. Tetrahedron Lett. 1992; 33: 813
    • 12d Markoulides MS. Regan AC. Tetrahedron Lett. 2011; 52: 2954
    • 12e Ntatsopoulos V. Vassiliou S. Macegoniuk K. Berlicki L. Mucha A. Eur. J. Med. Chem. 2017; 133: 107
    • 12f Tatarinov DA. Kundina MV. Dobrynin AB. Mironov VF. Russ. J. Gen. Chem. 2018; 88: 90
  • 13 Fougère C. Guénin E. Hardouin J. Lecouvey M. Eur. J. Org. Chem. 2009; 6048
  • 14 Gilman H. Catlin WE. Org. Synth. 1926; 6: 22
    • 15a Kapura AA. Shermergorn IM. J. Gen. Chem. USSR 1989; 59: 1283
    • 15b Cristau H.-J. Hervé A. Virieux D. Tetrahedron 2004; 60: 877
    • 15c Vassiliou S. Kosikowska P. Grabowiecka A. Yiotakis A. Kafarski P. Berlicki L. J. Med. Chem. 2010; 53: 5597
    • 15d Vassiliou S. Grabowiecka A. Kosikowska P. Berlicki L. ARKIVOC 2012; (iv): 33
  • 16 Deprèle S. Montchamp JL. J. Org. Chem. 2001; 66: 6745
  • 17 Kaboudin B. Haghighat H. Alaie S. Yokomatsu T. Synlett 2012; 23: 1965
  • 18 David T. Křečková P. Kotek J. Kubíček V. Lukeš I. Heteroat. Chem. 2012; 23: 195