Synthesis 2019; 51(03): 629-642
DOI: 10.1055/s-0037-1610321
short review
© Georg Thieme Verlag Stuttgart · New York

Directed C–H Functionalization of the Adamantane Framework

Radim Hrdina*
Institute of Organic Chemistry, Justus-Liebig University, Heinrich-Buff-Ring 17, 35392 Giessen, Germany   Email: radim.hrdina@org.chemie.uni-giessen.de
› Author Affiliations
This work was supported by the DFG (HR 97/1-1).
Further Information

Publication History

Received: 13 September 2018

Accepted after revision: 17 October 2018

Publication Date:
21 November 2018 (online)


Dedicated to Professor Pavel Kočovský on the occasion of his 68th birthday.

Abstract

This review summarizes the synthetic approaches towards 1,2-substitution pattern on the adamantane framework. Selected are the works containing the directed C–H functionalization step.

1 Introduction

2 Access to 1,2-Disubstituted Derivatives via C–H Insertion Reactions of Electrophilic Organic Species

3 Access to 1,2-Disubstituted Derivatives through Hydrogen Radical Abstraction Reactions

4 Access to 1,2-Disubstituted Derivatives Exploiting Metal-Catalyzed (Promoted) C–H Activations

5 Access to 1,2-Disubstituted Derivatives via Hydride Shift

6 Conclusion

7 Acronyms

 
  • References

  • 1 Fort RC, Schleyer P. vR. Chem. Rev. 1964; 64: 277
    • 2a Stimac A, Sekutor M, Mlinaric-Majerski K, Frkanec L, Frkanec R. Molecules 2017; 22: 14
    • 2b Agnew-Francis KA, Williams CM. Adv. Synth. Catal. 2016; 358: 675
    • 2c Zhou YJ, Brittain AD, Kong DY, Xiao M, Meng YZ, Sun LY. J. Mater. Chem. C 2015; 3: 6947
    • 2d Stockdale TP, Williams CM. Chem. Soc. Rev. 2015; 44: 7737
    • 2e Wanka L, Iqbal K, Schreiner PR. Chem. Rev. 2013; 113: 3516
    • 2f De Clercq E. Nat. Rev. Drug Discov. 2006; 5: 1015
    • 3a Fokin AA, Schreiner PR. Adv. Synth. Catal. 2003; 345: 1035
    • 3b Fokin AA, Schreiner PR. Chem. Rev. 2002; 102: 1551
    • 4a Mak JY. W, Pouwer RH, Williams CM. Angew. Chem. Int. Ed. 2014; 53: 13664
    • 4b Köbrich G. Angew. Chem., Int. Ed. Engl. 1973; 12: 464
    • 5a Tae EL, Zhu ZD, Platz MS. J. Phys. Chem. A 2001; 105: 3803
    • 5b Conlin RT, Miller RD, Michl J. J. Am. Chem. Soc. 1979; 101: 7637
    • 6a Wang XF, Dong YX, Ezell EL, Garrison JC, Wood JK, Hagen JP, Vennerstrom JL. Tetrahedron 2017; 73: 2972
    • 6b Cindro N, Antol I, Mlinaric-Majerski K, Halasz I, Wan P, Basaric N. J. Org. Chem. 2015; 80: 12420
    • 6c Zoidis G, Sandoval A, Pineda-Farias JB, Granados-Soto V, Felix R. Bioorg. Med. Chem. 2014; 22: 1797
    • 6d Zoidis G, Kolocouris N, Kelly JM, Prathalingam SR, Naesens L, De Clercq E. Eur. J. Med. Chem. 2010; 45: 5022
    • 6e Zoidis G, Tsotinis A, Kolocouris N, Kelly JM, Prathalingam SR, Naesens L, De Clercq E. Org. Biomol. Chem. 2008; 6: 3177
    • 6f Papanastasiou I, Tsotinis A, Kolocouris N, Prathalingam SR, Kelly JM. J. Med. Chem. 2008; 51: 1496
    • 6g Mlinaric-Majerski K, Kragol G, Ramljak TS. Synlett 2008; 405
    • 6h Kolocouris N, Zoidis G, Fytas C. Synlett 2007; 1063
    • 6i Okazaki T, Ogawa K, Kitagawa T, Takeuchi K. J. Org. Chem. 2002; 67: 5981
    • 6j Abdelsayed AN, Bauer L. Tetrahedron 1988; 44: 1873
    • 6k Chakrabarti JK, Hotten TM, Rackham DM, Tupper DE. J. Chem. Soc., Perkin Trans. 1 1976; 1893
    • 6l Tabushi I, Aoyama Y. J. Org. Chem. 1973; 38: 3447
    • 6m Lenoir D, Glaser R, Mison P, Schleyer P. vR. J. Org. Chem. 1971; 36: 1821
    • 6n Cuddy BD, Grant D, McKervey MA. J. Chem. Soc. C 1971; 3173
    • 7a Torres E, Fernandez R, Miquet S, Font-Bardia M, Vanderlinden E, Naesens L, Vazquez S. ACS Med. Chem. Lett. 2012; 3: 1065
    • 7b Moss RA, Sauers RR, Sheridan RS, Tian JZ, Zuev PS. J. Am. Chem. Soc. 2004; 126: 10196
    • 7c Stoelting DT, Shiner VJ. J. Am. Chem. Soc. 1993; 115: 1695
    • 7d Ohga Y, Takeuchi K. J. Phys. Org. Chem. 1993; 6: 293
    • 7e Sosnowski JJ, Rheingold AL, Murray RK. J. Org. Chem. 1985; 50: 3788
    • 8a Kuga T, Sasano Y, Tomizawa M, Shibuya M, Iwabuchi Y. Synthesis 2018; 50: 1820
    • 8b Ponomarenko MV, Serguchev YA, Hirschberg ME, Roschenthaler GV, Fokin AA. Chem. Eur. J. 2014; 20: 10383
    • 8c Serguchev YA, Ponomarenko MV, Lourie LF, Fokin AA. J. Phys. Org. Chem. 2011; 24: 407
    • 8d Denmark SE, Lee WS. Chem. Asian J. 2008; 3: 327
    • 8e Serguchev YA, Ponomarenko MV, Lourie LF, Chernega AN. J. Fluorine Chem. 2003; 123: 207
    • 8f Skomorokhov MY, Klimochkin YN. Russ. J. Gen. Chem. 2002; 72: 1490
    • 8g Shibuya M, Taniguchi T, Takahashi M, Ogasawara K. Tetrahedron Lett. 2002; 43: 4145
    • 8h Nesterenko AM, Ponomarenko MV, Lur’e LF, Serguchev YA. Theor. Exp. Chem. 2002; 38: 156
    • 8i Skomorokhov MY, Klimochkin YN. Russ. J. Org. Chem. 2001; 37: 1188
    • 8j Djaidi D, Leung IS. H, Bishop R, Craig DC, Scudder ML. J. Chem. Soc., Perkin Trans. 1 2000; 2037
    • 8k Camps P, El Achab R, Gorbig DM, Morral J, Munoz-Torrero D, Badia A, Banos JE, Vivas NM, Barril X, Orozco M, Luque FJ. J. Med. Chem. 1999; 42: 3227
    • 8l Denmark SE, Henke BR. J. Am. Chem. Soc. 1989; 111: 8032
    • 8m Funk RL, Bolton GL, Daggett JU, Hansen MM, Horcher LH. M. Tetrahedron 1985; 41: 3479
    • 9a Takagi R, Inoue Y, Ohkata K. J. Org. Chem. 2008; 73: 9320
    • 9b Takagi R, Miwa Y, Matsumura S, Ohkata K. J. Org. Chem. 2005; 70: 8587
    • 9c Ahmed MG, Ahmed SA, Akhter K, Moeiz SM. I, Tsuda Y, Kiuchi F, Hossain MM, Forsterling FH. J. Chem. Res., Synop. 2005; 293
    • 9d Ahmed MG, Moeiz SM. I, Ahmed SA, Kiuchi F, Tsuda Y, Sampson P. J. Chem. Res., Synop. 1999; 316
    • 9e Hickmott PW, Ahmed MG, Ahmed SA, Wood S, Kapon M. J. Chem. Soc., Perkin Trans. 1 1985; 2559
  • 10 Fokin AA, Pashenko AE, Bakhonsky VV, Zhuk TS, Chernish LV, Gunchenko PA, Kushko AO, Becker J, Wende RC, Schreiner PR. Synthesis 2017; 49: 2003
    • 11a Gunawan MA, Hierso JC, Poinsot D, Fokin AA, Fokina NA, Tkachenko BA, Schreiner PR. New J. Chem. 2014; 38: 28
    • 11b Schwertfeger H, Fokin AA, Schreiner PR. Angew. Chem. Int. Ed. 2008; 47: 1022
  • 12 Karimov RR, Hartwig JF. Angew. Chem. Int. Ed. 2018; 57: 4234
  • 13 Gormisky PE, White MC. J. Am. Chem. Soc. 2013; 135: 14052
  • 14 Chu JC. K, Rovis T. Angew. Chem. Int. Ed. 2018; 57: 62
  • 15 Curran WV, Angier RB. J. Org. Chem. 1969; 34: 3668
  • 16 Alewood PF, Benn M, Reinfried R. Can. J. Chem. 1974; 52: 4083
  • 17 Kočovský P. Tetrahedron Lett. 1986; 27: 5521
  • 18 Rohde JJ, Pliushchev MA, Sorensen BK, Wodka D, Shuai Q, Wang JH, Fung S, Monzon KM, Chiou WJ, Pan LP, Deng XQ, Chovan LE, Ramaiya A, Mullally M, Henry RF, Stolarik DF, Imade HM, Marsh KC, Beno WA, Fey TA, Droz BA, Brune ME, Camp HS, Sham HL, Frevert EU, Jacobson PB, Link JT. J. Med. Chem. 2007; 50: 149
  • 19 Hrdina R, Larrosa M, Logemann C. J. Org. Chem. 2017; 82: 4891
  • 20 Hrdina R, Metz FM, Larrosa M, Berndt JP, Zhygadlo YY, Becker S, Becker J. Eur. J. Org. Chem. 2015; 6231
  • 21 Munnuri S, Adebesin AM, Paudyal MP, Yousufuddin M, Dalipe A, Falck JR. J. Am. Chem. Soc. 2017; 139: 18288
  • 22 Osawa E, Tahara Y, Togashi A, Iizuka T, Tanaka N, Kan T, Farcasiu D, Kent GJ, Engler EM, Schleyer P. vR. J. Org. Chem. 1982; 47: 1923
  • 23 Lloyd MG, D’Acunto M, Taylor RJ. K, Unsworth WP. Tetrahedron 2015; 71: 7107
  • 24 Nicolaou KC, Lister T, Denton RM, Montero A, Edmonds DJ. Angew. Chem. Int. Ed. 2007; 46: 4712
  • 25 Nicolaou KC, Stepan AF, Lister T, Li A, Montero A, Tria GS, Turner CI, Tang YF, Wang JH, Denton RM, Edmonds DJ. J. Am. Chem. Soc. 2008; 130: 13110
  • 26 Williamson BL, Tykwinski RR, Stang PJ. J. Am. Chem. Soc. 1994; 116: 93
  • 27 Zheng JC, Yun SY, Sun CR, Lee NK, Lee D. J. Org. Chem. 2011; 76: 1086
  • 28 Wang YL, Zarca M, Gong LZ, Zhang LM. J. Am. Chem. Soc. 2016; 138: 7516
  • 29 Becker J, Zhyhadlo YY, Butova ED, Fokin AA, Schreiner PR, Förster M, Holthausen MC, Specht P, Schindler S. Chem. Eur. J. 2018; 24: 15543
  • 30 Stateman LM, Nakafuku KM, Nagib DA. Synthesis 2018; 50: 1569
  • 31 Lunn WH. W, Podmore WD, Szinai SS. J. Chem. Soc. C 1968; 1657
    • 32a Tsunoi S, Ryu I, Okuda T, Tanaka M, Komatsu M, Sonoda N. J. Am. Chem. Soc. 1998; 120: 8692
    • 32b Tsunoi S, Ryu I, Sonoda N. J. Am. Chem. Soc. 1994; 116: 5473
  • 33 Hu AH, Guo JJ, Pan H, Tang HM, Gao ZB, Zuo ZW. J. Am. Chem. Soc. 2018; 140: 1612
  • 35 Spitz UP, Eaton PE. Angew. Chem. Int. Ed. 1994; 33: 2220
  • 36 Mou XQ, Chen XY, Chen G, He G. Chem. Commun. 2018; 54: 515
  • 37 Liu T, Myers MC, Yu JQ. Angew. Chem. Int. Ed. 2017; 56: 306
  • 38 Choi GJ, Zhu QL, Miller DC, Gu CJ, Knowles RR. Nature (London) 2016; 539: 268
  • 39 Lv LY, Li ZP. J. Org. Chem. 2017; 82: 2689
  • 40 Marron NA, Gano JE. Synth. Commun. 1977; 7: 515
  • 41 Kuzmanich G, Vogelsberg CS, Maverick EF, Netto-Ferreira JC, Scaiano JC, Garcia-Garibay MA. J. Am. Chem. Soc. 2012; 134: 1115
    • 42a Evans SV, Garciagaribay M, Omkaram N, Scheffer JR, Trotter J, Wireko F. J. Am. Chem. Soc. 1986; 108: 5648
    • 42b Evans SV, Omkaram N, Scheffer JR, Trotter J. Tetrahedron Lett. 1986; 27: 1419
    • 42c Evans S, Omkaram N, Scheffer JR, Trotter J. Tetrahedron Lett. 1985; 26: 5903
    • 43a Sundarababu G, Leibovitch M, Corbin DR, Scheffer JR, Ramamurthy V. Chem. Commun. 1996; 2159
    • 43b Natarajan A, Mague JT, Ramamurthy V. Cryst. Growth Des. 2005; 5: 2348
    • 43c Kaliappan R, Ramamurthy V. J. Photochem. Photobiol., A 2009; 207: 144
    • 44a Horvat M, Gorner H, Warzecha KD, Neudorfl J, Griesbeck AG, Mlinaric-Majerski K, Basaric N. J. Org. Chem. 2009; 74: 8219
    • 44b Basaric N, Horvat M, Mlinaric-Majerski K, Zimmermann E, Neudorfl J, Griesbeck AG. Org. Lett. 2008; 10: 3965
  • 45 Gensch T, Hopkinson MN, Glorius F, Wencel-Delord J. Chem. Soc. Rev. 2016; 45: 2900
  • 46 Hackett M, Whitesides GM. Organometallics 1987; 6: 403
  • 47 Gerber R, Blacque O, Frech CM. ChemCatChem 2009; 1: 393
  • 48 Millard MD, Moore CE, Rheingold AL, Figueroa JS. J. Am. Chem. Soc. 2010; 132: 8921
    • 49a Endo K, Grubbs RH. J. Am. Chem. Soc. 2011; 133: 8525
    • 49b Rosebrugh LE, Herbert MB, Marx VM, Keitz BK, Grubbs RH. J. Am. Chem. Soc. 2013; 135: 1276
    • 49c Bronner SM, Herbert MB, Patel PR, Marx VM, Grubbs RH. Chem. Sci. 2014; 5: 4091
  • 50 Cannon JS, Zou LF, Liu P, Lan Y, O’Leary DJ, Houk KN, Grubbs RH. J. Am. Chem. Soc. 2014; 136: 6733
  • 51 Davies DL, Macgregor SA, McMullin CL. Chem. Rev. 2017; 117: 8649
  • 52 Pan JL, Li QZ, Zhang TY, Hou SH, Kang JC, Zhang SY. Chem. Commun. 2016; 52: 13151
  • 53 Lao YX, Wu JQ, Chen YY, Zhang SS, Li QJ, Wang HG. Org. Chem. Front. 2015; 2: 1374
  • 54 Larrosa M, Heiles S, Becker J, Spengler B, Hrdina R. Adv. Synth. Catal. 2016; 358: 2163
  • 55 Coomber CE, Benhamou L, Bucar DK, Smith PD, Porter MJ, Sheppard TD. J. Org. Chem. 2018; 83: 2495
  • 56 Larrosa M, Zonker B, Volkmann J, Wech F, Logemann C, Hausmann H, Hrdina R. Chem. Eur. J. 2018; 24: 6269
  • 57 Fu HY, Shen PX, He J, Zhang FL, Li SH, Wang P, Liu T, Yu JQ. Angew. Chem. Int. Ed. 2017; 56: 1873
  • 58 Fan ZL, Shu SQ, Ni JB, Yao QZ, Zhang A. ACS Catal. 2016; 6: 769
  • 59 Hernando E, Villalva J, Martinez AM, Alonso I, Rodriguez N, Arrayas RG, Carretero JC. ACS Catal. 2016; 6: 6868
  • 60 Gulia N, Daugulis O. Angew. Chem. Int. Ed. 2017; 56: 3630
  • 61 Peng J, Chen C, Xi CJ. Chem. Sci. 2016; 7: 1383
  • 62 Yang QL, Li YQ, Ma C, Fang P, Zhang XJ, Mei TS. J. Am. Chem. Soc. 2017; 139: 3293
  • 63 Nako AE, Oyamada J, Nishiura M, Hou ZM. Chem. Sci. 2016; 7: 6429
  • 64 Peng B, Maulide N. Chem. Eur. J. 2013; 19: 13274
  • 65 Haibach MC, Seidel D. Angew. Chem. Int. Ed. 2014; 53: 5010
  • 66 Kanishchev MI, Smit VA, Shchegolev AA, Rodionov AP, Caple R. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1979; 28: 778
  • 67 Kanishchev MI, Smit VA, Shchegolev AA, Caple R. Bull. Acad. Sci. USSR, Div. Chem. Sci. 1979; 28: 2330