Synthesis 2019; 51(09): 1841-1870
DOI: 10.1055/s-0037-1611746
review
© Georg Thieme Verlag Stuttgart · New York

N-Halo Reagents: Modern Synthetic Approaches for Heterocyclic Synthesis

,
Marcio C.S. de Mattos*
Departamento de Química Orgânica, Instituto de Química, Universidade Federal do Rio de Janeiro, CP 68545, Rio de Janeiro, 219745-970, Brazil   Email: mmattos@iq.ufrj.br
› Author Affiliations
This work was financially supported by CNPq and Faperj.
Further Information

Publication History

Received: 29 December 2018

Accepted after revision: 06 February 2019

Publication Date:
27 March 2019 (online)


Abstract

Heterocyclic chemistry is an essential frontier in science and a source of novel biologically active compounds. The development of innovative synthetic methodologies that allows access to different heterocyclic rings is of critical interest to the scientific community. This review will focus on recent applications of N-halo compounds (e.g., N-halosuccinimides, trihaloisocyanuric acids, N-halosulfonamides, etc.) in heterocyclic construction via electrophilic cyclization, asymmetric halocyclization, oxidative cyclization, and radical processes.

1 Introduction

2 N-Halo Reagent Mediated Heterocyclic Construction and Functionalization

2.1 Electrophilic Halocyclizations

2.1.1 Asymmetric Halocyclizations

2.2 Radical Halocyclizations

2.3 Oxidative Halocyclizations

2.4 Miscellaneous Halocyclization Reactions

3 Summary and Outlook

 
  • References

  • 1 Walsh CT. Tetrahedron Lett. 2015; 56: 3075
    • 2a Taylor AP, Robinson RP, Fobian YM, Blakemore DC, Jones LH, Fadeyi O. Org. Biomol. Chem. 2016; 14: 6611
    • 2b Cabrele C, Reiser O. J. Org. Chem. 2016; 81: 10109
    • 2c Meanwell NA. Adv. Heterocycl. Chem. 2017; 123: 245
    • 2d Martins P, Jesus J, Santos S, Raposo LR, Roma-Rodrigues C, Baptista PV, Fernandes AR. Molecules 2015; 20: 16852
    • 3a Nylund K, Johansson P, Puterova Z, Krutosikova A. Heterocyclic Compounds: Synthesis, Properties and Applications . Nova Science Publishers; Hauppauge (New York): 2010
    • 3b Murphree SS. In Progress in Heterocyclic Chemistry, Vol. 22. Gribble G, Joule J. Elsevier; Oxford: 2011: 21
    • 4a Cella R, Stefani HA. Tetrahedron 2009; 65: 2619
    • 4b Vo C.-VT, Bode JW. J. Org. Chem. 2014; 79: 2809
    • 4c Wu X.-F, Neumann H, Beller M. Chem. Rev. 2013; 113: 1
    • 4d Dubrovskiy AV, Markina NA, Larock RC. Org. Biomol. Chem. 2013; 11: 191
    • 4e Elwahy AH. M, Shaaban MR. RSC Adv. 2015; 5: 75659
    • 4f Stepien M, Gonka E, Zyla M, Sprutta N. Chem. Rev. 2017; 117: 3479
    • 5a Hayashi Y. Chem. Sci. 2016; 7: 866
    • 5b Zhao W, Chen F.-E. Curr. Org. Synth. 2012; 9: 873
    • 5c Sydnes MO. Curr. Green Chem. 2014; 1: 216
    • 5d Varma RS. Green Chem. 2014; 16: 2027
    • 5e Wu G, Yin W, Shen HC, Huang Y. Green Chem. 2012; 14: 580
  • 6 Wender PA. Nat. Prod. Rep. 2014; 31: 433

    • For reviews on N-halo compounds, see:
    • 7a Minakata S. Acc. Chem. Res. 2009; 42: 1172
    • 7b Kolvani E, Ghorbani-Choghamarani A, Salehi P, Shirini F, Zolfigol MA. J. Iran. Chem. Soc. 2007; 4: 126
    • 7c Veisi H, Ghorbani-Vaghei R, Zolfigol MA. Org. Prep. Proced. Int. 2011; 43: 489
  • 8 For a review on N-halosuccinimides, see: Koval’ IV. Russ. J. Org. Chem. 2002; 38: 301
  • 9 Saikia I, Borah AJ, Phukan P. Chem. Rev. 2016; 116: 6837

    • For reviews on N-halosulfonamides, see:
    • 10a Koval’ IV. Russ. J. Org. Chem. 2000; 36: 1397
    • 10b Barbero M, Bazzi S, Cadamuro S, Dughera S. Curr. Org. Chem. 2011; 15: 576
  • 11 Rajbongshi KK, Borah AJ, Phukan P. Synlett 2016; 27: 1618

    • For reviews on trichloroisocyanuric acid, see:
    • 12a Tilstan U, Weinmann H. Org. Process Res. Dev. 2002; 4: 384
    • 12b Mendonça GF, de Mattos MC. S. Curr. Org. Synth. 2013; 10: 820
  • 13 Canelli E. Am. J. Publ. Health 1974; 64: 155
  • 14 Yu C, Zhu L, Xiao J, Tang H, Guo G, Zeng Q, Wang X. Food Control 2009; 20: 205
  • 15 Wengert M, Sanseverino AM, de Mattos MC. S. J. Braz. Chem. Soc. 2002; 13: 700
  • 16 For a review on tribromoisocyanuric acid, see: de Almeida LS, Esteves PM, de Mattos MC. S. Curr. Green Chem. 2014; 1: 94
  • 17 de Almeida LS, Esteves PM, de Mattos MC. S. Synlett 2006; 1515

    • For recent examples, see:
    • 18a Hiramatsu K, Honjo T, Rauniyar V, Toste FD. ACS Catal. 2016; 6: 151
    • 18b Yang X, Wu T, Phipps RJ, Toste FD. Chem. Rev. 2015; 115: 826
    • 18c Wolstenhulme JR, Gouverneur V. Acc. Chem. Res. 2014; 47: 3560
  • 19 de Andrade VS. C, de Mattos MC. S. Curr. Green Chem. 2018; 5: 68
  • 20 Veisi H, Ghorbani-Vaghei R. Tetrahedron 2010; 66: 7445
    • 21a Castellanos A, Fletcher SP. Chem.–Eur. J. 2011; 17: 5766
    • 21b Denmark SE, Kuester WE, Burk MT. Angew. Chem. Int. Ed. 2012; 51: 10938
    • 21c Hennecke U. Chem. Asian J. 2012; 7: 456
    • 21d Murai K, Fujioka H. Heterocycles 2013; 87: 763
    • 21e Cheng YA, Yu WZ, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 2333
    • 21f Nolsoe JM. J, Hansen TV. Eur. J. Org. Chem. 2014; 3051
    • 21g Zheng S, Schienebeck CM, Zhang W, Wang H.-Y, Tang W. Asian J. Org. Chem. 2014; 3: 366

      For reviews, see:
    • 22a Godoi B, Schumacher RF, Zeni G. Chem. Rev. 2011; 111: 2937
    • 22b da Silva FM, Jones JJr, de Mattos MC. S. Curr. Org. Synth. 2005; 2: 393
    • 22c Robin S, Rousseau G. Eur. J. Org. Chem. 2002; 3099
  • 24 Zhou L, Chen J, Zhou J, Yeung Y.-Y. Org. Lett. 2011; 13: 2448
  • 25 Zhou L, Chen J, Zhou J, Yeung Y.-Y. Org. Lett. 2011; 13: 5804
  • 26 Zhou J, Zhou L, Yeung Y.-Y. Org. Lett. 2012; 14: 5250
  • 27 Zhou J, Yeung Y.-Y. Org. Lett. 2014; 16: 2134
  • 28 Zhou J, Yeung Y.-Y. Org. Biomol. Chem. 2014; 12: 7482
  • 29 Mal K, Kaur A, Das I. Asian J. Org. Chem. 2015; 4: 1132
  • 30 Wei Y, Lin S, Zhang J, Niu Z, Fu Q, Liang F. Chem. Commun. 2011; 47: 12394
  • 31 de Meijere A. Angew. Chem. Int. Ed. 1979; 18: 809
  • 32 Wong YC, Ke Z, Yeung YY. Org. Lett. 2015; 17: 4944
  • 33 Rösner C, Hennecke U. Org. Lett. 2015; 17: 3226
  • 34 Wang Y, Wang K.-H, Su Y, Yang Z, Wen L, Liu L, Wang J, Huang D, Hu Y. J. Org. Chem. 2018; 83: 939
  • 35 Wang N, Chen B, Ma S. Adv. Synth. Catal. 2014; 356: 485
  • 36 Li G, Zhang-Negrerie D, Du Y. Synthesis 2017; 49: 2917
  • 37 Grandclaudon C, Michelet V, Toullec PY. Synlett 2018; 29: 310
  • 38 Ding Q, Wu J. Adv. Synth. Catal. 2008; 350: 1850
  • 39 Singha R, Ghosh M, Das S, Das D, Ray JK. New J. Chem. 2016; 40: 7269
    • 40a Zhu ZB, Kirsch SF. Chem. Commun. 2013; 49: 2272
    • 40b Sherry BD, Maus L, Laforteza BN, Toste FD. J. Am. Chem. Soc. 2006; 128: 8132
    • 40c Menz H, Kirsch SF. Org. Lett. 2006; 8: 4795
  • 41 Chong Q, Wang C, Wang D, Wang H, Wu F, Xin X, Wan B. Tetrahedron Lett. 2015; 56: 401
  • 42 Xin X, Wang D, Wu F, Li X, Wan B. J. Org. Chem. 2013; 78: 4065
  • 43 Majumdar KC, Rahaman H, Roy B. Synth. Commun. 2007; 37: 1477
  • 44 Singh B, Chandra A, Singh S, Singh RM. Tetrahedron 2011; 67: 505

    • 45a Godet T, Vaxelaire C, Michel C, Milet A, Belmont P. Chem.–Eur. J. 2007; 13: 5632
    • 45b Chandra A, Singh B, Khanna RS, Singh RM. J. Org. Chem. 2009; 74: 5664
  • 46 Ouyang HC, Tang RY, Zhong P, Zhang XG, Li JH. J. Org. Chem. 2011; 76: 223
  • 47 Chang L, Guo T, Wang Z, Wang S, Yao Z.-J. J. Org. Chem. 2017; 82: 1567
  • 48 For a review on the Pictet–Spengler cyclization, see: Stöckigt J, Antonchick AP, Wu F, Waldmann H. Angew. Chem. Int. Ed. 2011; 50: 8538
  • 49 Nguyen KH, Tomasi S, Le Roch M, Toupet L, Renault J, Uriac P, Gouault N. J. Org. Chem. 2013; 78: 7809
  • 50 Li YL, Li J, Ma AL, Huang YN, Deng J. J. Org. Chem. 2015; 80: 3841
  • 51 Kothandaraman P, Lauw SJ. L, Chan PW. H. Tetrahedron 2013; 69: 7471
  • 52 Zhu HT, Luo TT, Shi SH, Zhou NN, Ning SS, Zhang C, Xiao YG, Fan MJ, Yang DS. Tetrahedron Lett. 2017; 58: 4137
  • 53 Xiang H, Yang C. Org. Lett. 2014; 16: 5686
  • 54 Huang C, Zeng Y, Cheng H, Hu A, Liu L, Xiao Y, Zhang J. Org. Lett. 2017; 19: 4968
  • 55 Singh PK, Verma F, Bhardiya SR, Singh M, Rai VK, Rai A. ChemistrySelect 2019; 4: 1240
  • 56 Sasaki T, Moriyama K, Togo H. J. Org. Chem. 2017; 82: 11727
  • 57 Fan GT, Sun MH, Gao G, Chen J, Zhou L. Synlett 2014; 25: 1921
  • 58 Egart B, Lentz D, Czekelius C. J. Org. Chem. 2013; 78: 2490
  • 59 Hu Y, Yi R, Wang C, Xin X, Wu F, Wan B. J. Org. Chem. 2014; 79: 3052
  • 60 Hu Y, Yi R, Yu X, Xin X, Wang C, Wan B. Chem. Commun. 2015; 51: 15398
  • 61 Sadat-Ebrahimi SE, Zarj MG, Moghimi S, Yahya-Meymandi A, Mahdavi M, Arab S, Shafiee A, Foroumadi A. Synth. Commun. 2015; 45: 2142
  • 62 Kong Y, Yu L, Fu L, Cao J, Lai G, Cui Y, Hu Z, Wang G. Synthesis 2013; 45: 1975
  • 63 Li YL, Li J, Yu SN, Wang JB, Yu YM, Deng J. Tetrahedron 2015; 71: 8271
  • 64 Wong Y.-C, Yeung Y.-Y. Org. Biomol. Chem. 2016; 14: 3202
  • 65 Wang H, Huang L, Cao X, Liang D, Peng A.-Y. Org. Biomol. Chem. 2017; 15: 7396
  • 66 Liu L, Chen D, Yao J, Zong Q, Wang J, Zhou H. J. Org. Chem. 2017; 82: 4625
  • 67 Gazzola S, Beccalli EM, Borelli T, Castellano C, Chiacchio MA, Diamante D, Broggini G. J. Org. Chem. 2015; 80: 7226
  • 68 Sonawane AD, Garud DR, Udagawa T, Koketsu M. Org. Biomol. Chem. 2018; 16: 245
  • 69 Yin Q, You SL. Org. Lett. 2012; 14: 3526
  • 70 Tang B.-X, Tang D.-J, Tang S, Yu Q.-F, Zhang Y.-H, Liang Y, Zhong P, Li J.-H. Org. Lett. 2008; 10: 1063
  • 71 Fedoseev PD, Coppola GA, Ojeda GM, Van der Eycken EV. Chem. Commun. 2018; 54: 3625
  • 72 Chan YC, Yeung Y.-Y. Angew. Chem. Int. Ed. 2018; 57: 3483
  • 73 Parker PD, Lemercier BC, Pierce JG. J. Org. Chem. 2018; 83: 12
  • 74 Chen T, Yeung Y.-Y. Org. Biomol. Chem. 2016; 14: 4571
  • 75 Chen J, Zhou L, Tan CK, Yeung Y.-Y. J. Org. Chem. 2012; 77: 999
  • 76 Sun Y.-M, Yu L.-Z, Zhu Z.-Z, Hu X.-B, Gao Y.-N, Shi M. Org. Biomol. Chem. 2017; 15: 634
  • 77 Tan CK, Yeung Y.-Y. Chem. Commun. 2013; 49: 7985
    • 78a Davis FA, Zhou P, Murphy CK. Tetrahedron Lett. 1993; 34: 3971
    • 78b Duhamel L, Plé G, Angibaud P. Synth. Commun. 1993; 23: 2423
    • 78c Hajra S, Bhowmick M, Maji B, Sinha D. J. Org. Chem. 2007; 72: 4872
    • 78d Whitehead DC, Staples RJ, Borhan B. Tetrahedron Lett. 2009; 50: 656
  • 79 Kawato Y, Hamashima Y. Synlett 2018; 29: 1257
  • 80 Hennecke U, Müller CH, Fröhlich R. Org. Lett. 2011; 13: 860
  • 81 Müller CH, Rösner C, Hennecke U. Chem. Asian J. 2014; 9: 2162
  • 82 Huang D, Wang H, Xue F, Guan H, Li L, Peng X, Shi Y. Org. Lett. 2011; 13: 6350
  • 83 Denmark SE, Burk MT. Org. Lett. 2012; 14: 256
  • 84 Tai DW, Leung GY. C, Yeung Y.-Y. Angew. Chem. Int. Ed. 2014; 53: 5161
  • 85 Hennecke U, Müller CH, Daniliuc CC. Eur. J. Org. Chem. 2017; 484
  • 86 Tripathi CB, Mukherjee S. Angew. Chem. Int. Ed. 2013; 52: 8450
  • 87 Suresh R, Simlandy AK, Mukherjee S. Org. Lett. 2018; 20: 1300
  • 88 Tripathi CB, Mukherjee S. Org. Lett. 2014; 16: 3368
  • 89 Whitehead DC, Yousefi R, Jaganathan A, Borhan B. J. Am. Chem. Soc. 2010; 132: 3298
  • 90 Veitch GE, Jacobsen EN. Angew. Chem. Int. Ed. 2010; 49: 7332
  • 91 Dobish MC, Johnston JN. J. Am. Chem. Soc. 2012; 134: 6068
  • 92 Klosowski DW, Hethcox JC, Paull DH, Fang C, Donald JR, Shugrue CR, Pansick AD, Martin SF. J. Org. Chem. 2018; 83: 5954
  • 93 Knowe MT, Danneman MW, Sun S, Pink M, Johnston JN. J. Am. Chem. Soc. 2018; 140: 1998
  • 94 Li D, He H, Huang X, Yu P, Jiang X. SynOpen 2018; 2: 293
  • 95 Yu Y.-M, Huang Y.-N, Deng J. Org. Lett. 2017; 19: 1224
  • 96 Lu Y, Nakatsuji H, Okumura Y, Yao L, Ishihara K. J. Am. Chem. Soc. 2018; 140: 6039
  • 97 Jaganathan A, Garzan A, Whitehead DC, Staples RJ, Borhan B. Angew. Chem. Int. Ed. 2011; 50: 2593
  • 98 Jaganathan A, Borhan B. Org. Lett. 2014; 16: 3616
  • 99 Wang Y.-M, Wu J, Hoong C, Rauniyar V, Toste FD. J. Am. Chem. Soc. 2012; 134: 12928
  • 100 Brindle CS, Yeung CS, Jacobsen EN. Chem. Sci. 2013; 4: 2100
  • 101 Garzan A, Jaganathan A, Marzijarani NS, Yousefi R, Whitehead DC, Jackson JE, Borhan B. Chem.–Eur. J. 2013; 19: 9015
  • 102 Struble TJ, Lankswert HM, Pink M, Johnston JN. ACS Catal. 2018; 8: 11926
  • 103 Vara BA, Struble TJ, Wang W, Dobish MC, Johnston JN. J. Am. Chem. Soc. 2015; 137: 7302
  • 104 Yin Q, You S.-L. Org. Lett. 2013; 15: 4266
  • 105 Yin Q, You S.-K. Org. Lett. 2014; 16: 2426
  • 106 Liu K, Jiang H.-J, Li N, Li H, Wang J, Zhang Z.-Z, Yu J. J. Org. Chem. 2018; 83: 6815
  • 107 Liang X.-W, Chen X, Zhang Z, You S.-L. Chin. Chem. Lett. 2018; 29: 1212
  • 108 Li Z, Shi Y. Org. Lett. 2015; 17: 5752
  • 109 Pan H, Huang H, Liu W, Tian H, Shi Y. Org. Lett. 2016; 18: 896
  • 110 Miles DH, Veguillas M, Toste FD. Chem. Sci. 2013; 4: 3427
  • 111 Wilking M, Daniliuc CG, Hennecke U. Synlett 2014; 25: 1701
  • 112 Kristianslund R, Aursnes M, Tungen JE, Hansen TV. Tetrahedron Lett. 2016; 57: 5232
  • 113 Ni S, Cao J, Mei H, Han J, Li S, Pan Y. Green Chem. 2016; 18: 3935
  • 114 For a recent review on Buchwald–Hartwig amination, see: Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 115 Wang Z, Li X, Wang L, Li P. Tetrahedron 2019; 75: 1044
  • 116 Cao X, Cheng X, Xuan J. Org. Lett. 2018; 20: 449
  • 117 Zhang W, Su Y, Wang KH, Wu L, Chang B, Shi Y, Huang D, Hu Y. Org. Lett. 2017; 19: 376
  • 118 Chang B, Su Y, Huang D, Wang K.-H, Zhang W, Shi Y, Zhang X, Hu Y. J. Org. Chem. 2018; 83: 4365
  • 119 Zhang Y, Liu X.-K, Wu Z.-G, Wang Y, Pan Y. Org. Biomol. Chem. 2017; 15: 6901
  • 120 Yan Y, Zhang Y, Zha Z, Wang Z. Org. Lett. 2013; 15: 2274
  • 121 Tang M.-C, Zou Y, Watanabe K, Walsh CT, Tang Y. Chem. Rev. 2017; 117: 5226
  • 122 Tsoungas PG, Diplas AI. Heteroatom Chem. 2003; 14: 642
  • 123 Borsoi AF, Coldeira ME, Pissinate K, Macchi FS, Basso LA, Santos DS, Machado P. Synth. Commun. 2017; 47: 1319
  • 124 Li E, Wang M, Wang Z, Yu W, Chang J. Tetrahedron 2018; 74: 4613
  • 125 Bose DS, Reddy KR. J. Heterocycl. Chem. 2017; 54: 769
  • 126 Zhang L, Zeng Q, Mao A, Wu Z, Luo T, Xiao Y, Zhang J. Org. Biomol. Chem. 2014; 12: 8942
  • 127 Lade JJ, Patil BN, Vadagaonkar KS, Chaskar AC. Tetrahedron Lett. 2017; 58: 2103
  • 128 Bathula SR, Reddy MP, Viswanadham KK. D. R, Sathyanarayana P, Reddy MS. Eur. J. Org. Chem. 2013; 2013: 4552
  • 129 Samini HA, Dadvar F. Synthesis 2015; 47: 1899
  • 130 Yan Q, Luo J, Zhang-Negrerie D, Li H, Qi X, Zhao K. J. Org. Chem. 2011; 76: 8690
  • 131 Ishimoto K, Nagata T, Murabayashi M, Ikemoto T. Tetrahedron 2015; 71: 407
  • 132 Prabagar B, Nayak S, Prasad R, Sahoo AK. Org. Lett. 2016; 18: 3066
  • 133 Jiang Y, Yu S, Yang Y, Liu Y, Xu X, Zhang X, Yuan W. Org. Biomol. Chem. 2018; 16: 6647
  • 134 Li H, Widenhoefer RA. Tetrahedron 2010; 66: 4827
  • 135 Zhang J, Zhang X, Wu W, Zhang G, Xu S, Shi M. Tetrahedron Lett. 2015; 56: 1505
  • 136 For a review on the chemistry of quinolines, see: Prajapati SM, Patel KD, Vekariya RH, Panchal SN, Patel HD. RSC Adv. 2014; 4: 24463
  • 137 Muddam B, Venkateswarlu M, Kumar MS, Rajanna KC. Synlett 2018; 29: 85
  • 138 Chen X.-B, Wang X.-Q, Song J.-N, Yang Q.-L, Huang C, Liu W. Org. Biomol. Chem. 2017; 15: 3611
  • 139 Guo Y, Wang X, Zhu Z, Zhang J, Wu Y. Synlett 2016; 27: 2259
  • 140 de Andrade VS. C, de Mattos MC. S. Synthesis 2018; 50: 4867
  • 141 Rezazadeh S, Akhlaghinia B, Razavi N. Aust. J. Chem. 2015; 68: 145
  • 142 Zhao S, Wu Y, Sun Q, Cheng T.-M, Li R.-T. Synthesis 2015; 47: 1154
  • 143 For a review on Appel-type reactions involving N-halo compounds, see: de Andrade VS. C, de Mattos MC. S. Curr. Org. Synth. 2015; 12: 309
    • 144a Zheng Z, Han B, Wu F, Shi T, Liu J, Zhang Y, Hao J. Tetrahedron 2016; 72: 7738
    • 144b Zheng ZB, Li ZZ, Han BB, He ZM, Shi TF, Cheng P. Tetrahedron Lett. 2015; 56: 2219
  • 145 Han B, Zheng Z, Wu F, Wang A. Synth. Commun. 2017; 47: 2387
  • 146 Badigenchala S, Sekar G. J. Org. Chem. 2017; 82: 7657