Synthesis 2019; 51(18): 3369-3396
DOI: 10.1055/s-0037-1611844
review
© Georg Thieme Verlag Stuttgart · New York

Pyridones – Powerful Precursors for the Synthesis of Alkaloids, Their Derivatives, and Alkaloid-Inspired Compounds

,
Tomasz J. Idzik
Financial support by Narodowe Centrum Nauki (NCN, National Science Center, Poland) (Grant No. 2016/23/N/ST5/00101)
Further Information

Publication History

Received: 04 March 2019

Accepted after revision: 02 May 2019

Publication Date:
18 June 2019 (online)


Abstract

2-Pyridone is characterized by a very wide range of reactivity of a different nature, ranging from electrophilic aromatic substitution, CH–metal-mediated reactions, and NH/OH functionalization of both possible lactam/lactim tautomers, through cycloaddition, to nucleophilic addition and transformation of the tautomeric C=O/C–OH moiety. The high availability of 2-pyridones and the possibility of their far-reaching functionalization additionally increased their values. Therefore, they are very useful building blocks for the synthesis of structurally diverse piperidine and pyridine compounds, including naturally occurring 2-pyridones. This review reports on the use of simple 2-pyridones in the synthesis of alkaloids and alkaloids-inspired compounds based on the piperidine or pyridine framework.

1 Introduction

2 Structure, Availability, and Reactivity of 2-Pyridones

3 Monocyclic Piperidine Alkaloids from 2-Pyridones

4 Polycyclic Alkaloids, Their Derivatives, and Alkaloid-Inspired Compounds from 2-Pyridones

4.1 New Ring Formation Involving C/N Atoms of the 2-Pyridone Ring

4.1.1 Indolizine-Fused 2-Pyridones: Camptothecins and Related Compounds

4.1.2 Other Indolizines from 2-Pyridones

4.1.3 Compounds Bearing the Quinolizine Ring System

4.2 New Ring Formation Involving C/C Atoms of the 2-Pyridone Ring

4.2.1 C-2/C-3 Ring Fusion

4.2.2 C-3/C-4 Ring Fusion

4.2.3 C-4/C-5 Ring Fusion

4.2.4 C-5/C-6 Ring Fusion

4.2.5 C-2/C-4 Ring Bridge

4.2.6 C-2/C-6 Ring Bridge

4.2.7 C-3/C-5 Ring Bridge

4.2.8 C-3/C-6 Ring Bridge

4.2.9 C-4/C-6 Ring Bridge

5 Conclusion

 
  • References

  • 1 Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 1025

    • See, for example:
    • 3a Hiebel AC, Comins DL. Tetrahedron 2015; 71: 7354
    • 3b Tsukanov SV, Comins DL. J. Org. Chem. 2014; 79: 9074
    • 3c Bull JA, Mousseau JJ, Pelletier G, Charette AB. Chem. Rev. 2012; 112: 2642
  • 4 Jessen HJ, Gademann K. Nat. Prod. Rep. 2010; 27: 1168
    • 5a Hamama WS, Waly M, El-Hawary I, Zoorob HH. Synth. Commun. 2014; 44: 1730
    • 5b Torres M, Gil S, Parra M. Curr. Org. Chem. 2005; 9: 1757
    • 6a Zhachkina Michelson A, Petronico A, Lee JK. J. Org. Chem. 2012; 77: 1623
    • 6b Peng CS, Tokmakoff A. J. Phys. Chem. Lett. 2012; 3: 3302 ; and references cited therein
    • 7a Hao X, Xu Z, Lu H, Dai X, Yang T, Lin X, Ren F. Org. Lett. 2015; 17: 3382
    • 7b Sośnicki JG, Struk Ł, Idzik T, Maciejewska G. Tetrahedron 2014; 70: 8624
    • 7c Fang Y.-Q, Bio MM, Hansen KB, Potter MS, Clausen A. J. Am. Chem. Soc. 2010; 132: 15525
    • 8a Feng B, Li Y, Li H, Zhang X, Xie H, Cao H, Yu L, Xu Q. J. Org. Chem. 2018; 83: 6769
    • 8b Li C, Kähny M, Breit B. Angew. Chem. Int. Ed. 2014; 53: 13780
  • 9 Gurak JA. Jr, Tran VD, Sroda MM, Engle KM. Tetrahedron 2017; 73: 3636

    • See for example:
    • 10a Burton AG, Halls PJ, Katritzky AR. Tetrahedron Lett. 1971; 12: 2211
    • 10b Boros EE, Burova SA, Erickson GA, Johns BA, Koble CS, Kurose N, Sharp MJ, Tabet EA, Thompson JB, Toczko MA. Org. Process Res. Dev. 2007; 11: 899
    • 10c Tee OS, Paventi M. J. Am. Chem. Soc. 1982; 104: 4142
    • 11a Ziegler DS, Greiner R, Lumpe H, Kqiku L, Karaghiosoff K, Knochel P. Org. Lett. 2017; 19: 5760 ; and references cited therein
    • 11b Walters MA, Shay JJ. Synth. Commun. 1997; 27: 3573
  • 12 Dutta U, Deb A, Lupton DW, Maiti D. Chem. Commun. 2015; 51: 17744
  • 13 Hirano K, Miura M. Chem. Sci. 2018; 9: 22
  • 14 Xu B, Cheng Z, Fu L. Tetrahedron Lett. 2014; 55: 7194
    • 15a Thomas EW. J. Org. Chem. 1986; 51: 2184
    • 15b Sośnicki JG. Tetrahedron Lett. 2005; 46: 4295
    • 15c Sośnicki JG. Tetrahedron 2007; 63: 11862
    • 15d Sośnicki JG, Dzitkowski P, Struk Ł. Eur. J. Org. Chem. 2015; 5189 ; and references cited therein
    • 16a Kuzuya M, Noguchi A, Mano E, Okuda T. Bull. Chem. Soc. Jpn. 1985; 58: 1149
    • 16b Ghosh T, Hart H. J. Org. Chem. 1988; 53: 2398
    • 16c Afarinkia K, Vinader V, Nelson TD, Posner GH. Tetrahedron 1992; 48: 9111
    • 16d Kulyk S, Dougherty WG. Jr, Kassel WS, Zdilla MJ, Sieburth SM. Org. Lett. 2011; 13: 2180 ; and references cited therein
    • 16e Maturi MM, Bach T. Angew. Chem. Int. Ed. 2014; 53: 7661
    • 16f Conyers RC, Mazzone JR, Siegler MA, Posner GH. Tetrahedron Lett. 2016; 57: 3344
    • 16g Chennapuram M, Reddy UV. S, Seki C, Okuyama Y, Kwon E, Uwai K, Tokiwa M, Takeshita M, Nakano H. Eur. J. Org. Chem. 2017; 4633
  • 17 Klegraf E, Kunz H. Z. Naturforsch., B 2012; 67: 389
    • 18a Wysocki J, Schlepphorst C, Glorius F. Synlett 2015; 26: 1557 ; and references cited therein
    • 18b Shi G.-F, Li J.-Q, Jiang X.-P, Cheng Y. Tetrahedron 2008; 64: 5005
    • 19a Sugimoto O, Mori M, Moriya K, Tanji K. Helv. Chim. Acta 2001; 84: 1112
    • 19b Tinnermann H, Wille C, Alcarazo M. Angew. Chem. Int. Ed. 2014; 53: 8732
  • 20 Zhang E, Tang J, Li S, Wu P, Moses JE, Sharpless KB. Chem.–Eur. J. 2016; 22: 5692
  • 21 Echterhoff AK. C, Yogendra S, Kösters J, Fischer R, Weigand JJ. Eur. J. Org. Chem. 2014; 7631
  • 22 Qin J, Zhou W, Huang X, Dhondi P, Palani A, Aslanian R, Zhu Z, Greenlee W, Cohen-Williams M, Jones N, Hyde L, Zhang L. ACS Med. Chem. Lett. 2011; 2: 471
  • 23 Bassindale AR, Parker DJ, Taylor PG. J. Chem. Soc., Perkin Trans. 2 2000; 1059
  • 24 Bergman J, Pettersson B, Hasimbegovic V, Svensson PH. J. Org. Chem. 2011; 76: 1546
  • 25 Patil V, Sodji QH, Kornacki JR, Mrksich M, Oyelere AK. J. Med. Chem. 2013; 56: 3492
  • 26 Ropero BP. F. D, Elsegood MR. J, Fairley G, Gareth J, Pritchard GJ, Weaver GW. Eur. J. Org. Chem. 2016; 5238
  • 27 Rawson JM, Winpenny RE .P. Coord. Chem. Rev. 1995; 139: 313
  • 28 Amat M, Llor N, Huguet M, Molins E, Espinosa E, Bosch J. Org. Lett. 2001; 3: 3257 ; and references cited therein
  • 29 Gnecco D, Marazano C, Enríquez RG, Terán JL, Galindo A. Tetrahedron: Asymmetry 1998; 9: 2027
  • 30 Wall ME, Wani MC, Cook CE, Palmer KH, McPhail AT, Sim GS. J. Am. Chem. Soc. 1966; 88: 3888
  • 31 Hsiang Y.-H, Hertzberg R, Hecht S, Liu LF. J. Biol. Chem. 1985; 260: 14873
  • 33 Munster PN, Daud AI. Expert Opin. Invest. Drugs 2011; 20: 1565
  • 34 Schultz AG. Chem. Rev. 1973; 73: 385
  • 35 Wani MC, Ronman PE, Lindley JT, Wall ME. J. Med. Chem. 1980; 23: 554
  • 36 Henecka H. Chem. Ber. 1949; 82: 32
  • 37 Earl RA, Vollhardt KP. C. J. Org. Chem. 1984; 49: 4786
    • 38a Shen W, Coburn CA, Bornmann WG, Danishefsky SJ. J. Org. Chem. 1993; 58: 611
    • 38b Henegar KE, Baughman TA. J. Heterocycl. Chem. 2003; 40: 601
    • 38c Dallavalle S, Rocchetta DG, Musso L, Merlini L, Morini G, Penco S, Tinelli S, Berettac GL, Zunino F. Bioorg. Med. Chem. Lett. 2008; 18: 2781
    • 38d Jew S, Kim MG, Kim H.-J, Rho E.-Y, Park H, Kim J.-K, Han H.-J, Lee H. Bioorg. Med. Chem. Lett. 1998; 8: 1797
    • 38e Jew S, Kim H.-J, Kim M.-G, Roh E.-Y, Hong C, Kim J.-K, Lee J.-H, Lee H, Park H. Bioorg. Med. Chem. Lett. 1999; 9: 3203
    • 38f Brunin T, Hénichart JP, Rigo B. Tetrahedron 2005; 61: 7916
  • 39 Curran DP, Liu H. J. Am. Chem. Soc. 1992; 114: 5863
  • 40 Curran DP, Liu H, Josien H, Ko S.-B. Tetrahedron 1996; 52: 11385
  • 41 Josien H, Ko S.-B, Bom D, Curran DP. Chem.–Eur. J. 1998; 4: 67
  • 42 Gabarda AE, Du W, Isarno T, Tangirala RS, Curran DP. Tetrahedron 2002; 58: 6329
  • 43 Curran DP, Du W. Org. Lett. 2002; 4: 3215
  • 44 Tangirala RS, Antony S, Agama K, Pommier Y, Anderson DB, Bevins R, Curran DP. Bioorg. Med. Chem. 2006; 14: 6202
  • 45 Bowman WR, Bridge CF, Brookes P, Cloonan MO, Leach DC. J. Chem. Soc., Perkin Trans. 1 2002; 58
  • 46 Bowman WR, Cloonan MO, Fletcher AJ, Stein T. Org. Biomol. Chem. 2005; 3: 1460
  • 47 Dai W, Petersen JL, Wang KK. Org. Lett. 2006; 8: 4665
  • 48 Comins DL, Hong H, Jianhua G. Tetrahedron Lett. 1994; 35: 5331
  • 49 Comins DL, Hong H, Saha JK, Jianhua G. J. Org. Chem. 1994; 59: 5120
  • 50 Comins DL, Saha JK. J. Org. Chem. 1996; 61: 9623
  • 51 Comins DL, Baevsky MF, Hong H. J. Am. Chem. Soc. 1992; 114: 10971
  • 52 Comins DL, Nolan JM. Org. Lett. 2001; 3: 4255
    • 53a Zhao L, Xiong F.-J, Chen W.-X, Chen F.-E. Synthesis 2011; 4045
    • 53b Yu S, Huang QQ, Luo Y, Lu W. J. Org. Chem. 2012; 77: 713
    • 53c Bacherikov VA, Tsai T.-J, Chang J.-Y, Chou T.-C, Lee R.-Z, Su T.-L. Eur. J. Org. Chem. 2006; 4490
    • 53d Lavergne O, Demarquay D, Bailly C, Lanco C, Rolland A, Huchet M, Coulomb H, Muller N, Baroggi N, Camara J, Le Breton C, Manginot E, Cazaux J.-B, Bigg DC. H. J. Med. Chem. 2000; 43: 2285
  • 54 Liu L, Wang Y, Wang H, Peng C, Zhao J, Zhu Q. Tetrahedron Lett. 2009; 50: 6715
  • 55 Fortunak JM. D, Mastrocola AR, Mellinger M, Sisti NJ, Wood JL, Zhuang Z.-P. Tetrahedron Lett. 1996; 37: 5679
  • 56 Zhou H.-B, Liu G.-S, Yao Z.-J. Org. Lett. 2007; 9: 2003
  • 57 Liang Y, Jiang X, Yu Z.-X. Org. Lett. 2009; 11: 5302
  • 58 Twin H, Batey RA. Org. Lett. 2004; 6: 4913
  • 59 Dong W, Yuan Y, Hu B, Gao X, Gao H, Xie X, Zhang Z. Org. Lett. 2018; 20: 80
  • 60 Yuan Y, Dong W, Gao X, Gao H, Xie X, Zhang Z. J. Org. Chem. 2018; 83: 2840
  • 61 Yuan Y, Dong W, Gao X, Xie X, Curran DP, Zhang Z. Chin. J. Chem. 2018; 36: 1035
  • 63 Nakao Y, Idei H, Kanyiva KS, Hiyama T. J. Am. Chem. Soc. 2009; 131: 15996
  • 64 Donets PA, Cramer N. Angew. Chem. Int. Ed. 2015; 54: 633
  • 65 Nadin A, Harrison T. Tetrahedron Lett. 1999; 40: 4073
  • 66 Dragovich PS, Zhou R, Prins TJ. J. Org. Chem. 2002; 67: 741
    • 67a Xu X, Liu Y, Park C.-M. Angew. Chem. Int. Ed. 2012; 51: 9372
    • 67b Lerchen A, Knecht T, Koy M, Daniliuc CG, Glorius F. Chem.–Eur. J. 2017; 23: 12149
  • 68 Pereira MF, Rochais C, Dallemagne P. Anti-Cancer Agents Med. Chem. 2015; 15: 1080
  • 69 Wu X, Ji H. J. Org. Chem. 2018; 83: 4650
    • 70a Padwa A, Sheehan SM, Straub CS. J. Org. Chem. 1999; 64: 8648
    • 70b Mmutlane EM, Harris JM, Padwa A. J. Org. Chem. 2005; 70: 8055
  • 71 Arioli F, Pérez M, Are C, Estarellas C, Luque JF, Bosch J, Amat M. Chem.–Eur. J. 2015; 21: 13382
  • 72 Stoit AR, Pandit UK. Heterocycles 1987; 25: 7
  • 73 Heeten R, van der Boon LJ. P, Broere DL. J, Janssen E, de Kanter FJ. J, Ruijter E, Orru RV. A. Eur. J. Org. Chem. 2012; 275
    • 74a Frick KM, Kamphuis LG, Siddique KH. M, Singh KB, Foley RC. Front. Plant Sci. 2017; 8: 87
    • 74b Lindemann C, Schneider C. Synthesis 2016; 48: 828
  • 75 Botuha C, Galley CM. S, Gallagher T. Org. Biomol. Chem. 2004; 2: 1825
  • 76 Diesel J, Finogenova AF, Cramer N. J. Am. Chem. Soc. 2018; 140: 4489
  • 77 Timmerman JC, Laulhé S, Widenhoefer RA. Org. Lett. 2017; 19: 1466
  • 78 Li J, Yang Y, Wang Z, Feng B, You J. Org. Lett. 2017; 19: 3083
  • 79 Menes-Arzate M, Martínez R, Cruz-Almanza R, Muchowski JM, Osornio Y, Miranda LD. J. Org. Chem. 2004; 69: 4001
  • 80 Gray D, Gallagher T. Angew. Chem. Int. Ed. 2006; 45: 2419
  • 81 Durkin P, Magrone P, Matthews S, Dallanoce C, Gallagher T. Synlett 2010; 2789
  • 82 Gallagher T, Derrick I, Durkin PM, Haseler CA, Hirschhäuser C, Magrone P. J. Org. Chem. 2010; 75: 3766
  • 83 Pouny I, Batut M, Vendier L, David B, Yi S, Sautel F, Arimondo PB, Massiot G. Phytochemistry 2014; 107: 97
  • 84 Ouyang J, Yan R, Mi X, Hong R. Angew. Chem. Int. Ed. 2015; 54: 10940
  • 85 Huang Y.-W, Kong K, Wood JL. Angew. Chem. Int. Ed. 2018; 57: 7664
  • 86 Padwa A, Heidelbaugh TM, Kuethe JT. J. Org. Chem. 2000; 65: 2368
  • 87 Sośnicki JG. Tetrahedron Lett. 2006; 47: 6809
  • 88 Sośnicki JG. Synlett 2009; 2508
  • 89 Sośnicki JG, Struk Ł. Synlett 2009; 1812
  • 90 Alanine TA, Galloway WR. J. D, McGuire TM, Spring DR. Eur. J. Org. Chem. 2014; 5767
  • 91 Demers S, Stevenson H, Candler J, Bashore CG, Arnold EP, O’Neill BT, Coe JW. Tetrahedron Lett. 2008; 49: 3368
  • 92 Fang Y, Larock RC. Tetrahedron 2012; 68: 2819
  • 93 Sośnicki JG. Synlett 2003; 1673
  • 94 Dickinson EM. Jones G. 1969; 25: 1523
  • 95 Sośnicki JG, Struk Ł. Synlett 2010; 1209
  • 96 Hiroya K, Kawamoto K, Inamoto K, Sakamoto T, Doi T. Tetrahedron Lett. 2009; 50: 2115
  • 97 Fujita R, Hoshino M, Tomisawa H, Hongo H. Chem. Pharm. Bull. 2000; 48: 1814
    • 98a Fujita R, Watanabe K, Nishiuchi Y, Honda R, Matsuzaki H, Hongo H. Chem. Pharm. Bull. 2001; 49: 601
    • 98b Fujita R, Watanabe K, Ikeura W, Ohtake Y, Hongo H, Harigaya Y, Matsuzaki H. Tetrahedron 2001; 57: 8841
    • 98c Hoshino M, Watanabe K, Ohtake Y, Sato Y, Matsuzaki H, Fujita R. Heterocycles 2009; 77: 263
  • 99 Abbott BM, Ferrari FD, Harnor SJ, Barnes JC, Marquez R. Tetrahedron 2008; 64: 5072
  • 100 Sellstedt M, Almqvist F. Org. Lett. 2011; 13: 5278
  • 101 Gross H, Goeger DE, Hills P, Mooberry SL, Ballantine DL, Murray T, Valeriote FA, Gerwick WH. J. Nat. Prod. 2006; 69: 640
  • 102 Sellstedt M, Dang HT, Prasad GK, Sauer U, Almqvist F. Eur. J. Org. Chem. 2013; 7476
  • 103 Kulakov IV, Shatsauskas AL, Matsukevich MV, Palamarchuk IV, Seilkhanov TM, Gatilov YV, Fisyuk AS. Synthesis 2017; 49: 3700
  • 104 Rocca P, Marsais F, Godard A, Quéguiner G. Tetrahedron Lett. 1993; 34: 2937
  • 105 Harris JM, Padwa A. Org. Lett. 2003; 5: 4195
  • 106 Devert M, Sabot C, Giboreau P, Constant J.-F, Greene AE, Kanazawa A. Tetrahedron 2010; 66: 7227
  • 107 Kanazawa A, Devert M, Constant J.-F, Greene AE. Tetrahedron 2013; 69: 3013
  • 108 Babjak M, Kanazawa A, Anderson RJ, Greene AE. Org. Biomol. Chem. 2006; 4: 407
  • 109 Barluenga J, Tomás M, Suárez-Sobrino A, Rubio E. J. Org. Chem. 1993; 58: 700
  • 110 Singh BK, Cavalluzzo C, De Maeyer M, Debyser Z, Parmar VS, Van der Eycken E. Eur. J. Org. Chem. 2009; 4589
  • 111 Tooriyama S, Mimori Y, Wu Y, Kogure N, Kitajima M, Takayama H. Org. Lett. 2017; 19: 2722
  • 112 Singh M, Kaur M, Kukreja H, Chugh R, Silakari O, Singh D. Eur. J. Med. Chem. 2013; 70: 165
  • 113 Ma X, Gang DR. Nat. Prod. Rep. 2004; 21: 752
  • 114 Ha GT, Wong RK, Zhang Y. Chem. Biodivers. 2011; 8: 1189
  • 115 Xia Y, Kozikowski AP. J. Am. Chem. Soc. 1989; 111: 4116
  • 116 Rajendran V, Rong S.-B, Saxena A, Doctor BP, Kozikowski AP. Tetrahedron Lett. 2001; 42: 5359
  • 117 Kozikowski AP, Ding Q, Saxena A, Doctor BP. Bioorg. Med. Chem. Lett. 1996; 6: 259
  • 118 Tudhope SR, Bellamy JA, Ball A, Rajasekar D, Azadi-Ardakani M, Meera HS, Gnanadeepam JM, Saiganesh R, Gibson F, He L, Behrens CH, Underiner G, Marfurt J, Favre N. Org. Process Res. Dev. 2012; 16: 635
  • 119 Savarin CG, Murry JA, Dormer PG. Org. Lett. 2002; 4: 2071
  • 120 Wang R, Lu S.-C, Zhang Y.-M, Shi Z, Zhang W. Org. Biomol. Chem. 2011; 9: 5802
  • 121 Hiroya K, Jouka R, Katoh O, Sakuma T, Anzai M, Sakamoto T. ARKIVOC 2003; (viii): 232
  • 122 Vamvacas C, Phillipsborn WV, Schlittler E, Schmid H, Karrer P. Helv. Chim. Acta 1957; 40: 1793
  • 123 Fürstner A, Leitner A. Angew. Chem. Int. Ed. 2003; 42: 308
  • 124 Passarella D, Favia R, Giardini A, Lesma G, Martinelli M, Silvani A, Danieli B, Efange SM. B, Mash DB. Bioorg. Med. Chem. 2003; 11: 1007
  • 125 Goutam KJ, Sibasish P, Surajit S. Org. Prep. Proced. Int. 2001; 43: 541
  • 126 Quirante J, Vila X, Bonjoch J, Kozikowski AP, Johnson KM. Bioorg. Med. Chem. 2004; 12: 1383
  • 127 Tomisawa H, Hongo H, Hatano T, Nakano H, Fujita R. Chem. Pharm. Bull. 1987; 35: 530
  • 128 Chen P, Carroll PJ, Sieburth SM. Org. Lett. 2009; 11: 4540
  • 129 Conte da Frota ML. Jr, Biegelmeyer da Silva R, Mothes B, Henriques AT, Moreira JC. F. Curr. Pharm. Biotechnol. 2012; 13: 235; and references cited therein
  • 130 Stitzel RE. Modern Pharmacology with Clinical Applications, 6th ed. Craig CR, Stitzel RE. Lippincott Williams & Wilkins; Philadelphia: 2004. 325 ISBN 9780781737623
  • 131 Klegraf E, Knauer S, Kunz H. Angew. Chem. Int. Ed. 2006; 45: 2623
  • 132 Sośnicki JG, Idzik TJ, Borzyszkowska A, Maciejewska G, Struk Ł. J. Org. Chem. 2018; 83: 1745
  • 133 Sośnicki JG, Idzik TJ, Borzyszkowska A, Wróblewski E, Maciejewska G, Struk Ł. Tetrahedron 2017; 73: 481