Synthesis 2019; 51(09): 1871-1891
DOI: 10.1055/s-0037-1612305
review
© Georg Thieme Verlag Stuttgart · New York

Kinetic Resolution, Dynamic Kinetic Resolution and Asymmetric Desymmetrization by N-Heterocyclic Carbene Catalysis

,
Olga Bortolini
,
Graziano Di Carmine
,
Daniele Ragno
,
Further Information

Publication History

Received: 21 December 2018

Accepted after revision: 05 February 2019

Publication Date:
18 March 2019 (online)


Abstract

N-Heterocyclic carbenes (NHCs) are now well-established organocatalysts for a large number of asymmetric and non-asymmetric transformations. In the last 15 years, there has been significant interest in using NHCs in kinetic resolution (KR), dynamic kinetic resolution (DKR) and asymmetric desymmetrization reactions for the stereoselective synthesis of enantioenriched compounds, with diverse substrates and activation modes being adopted to this end. This short review brings into focus the progress made on NHC-catalyzed KR, DKR, and asymmetric desymmetrization from 2004 until December 2018. The literature discussed in this article is classified on the basis of the type of reaction involving the NHC catalyst.

1 Introduction

2 Acylation Strategies

2.1 O-Acylation

2.2 N-Acylation

2.3 C-Acylation

3 Aldol-Acylation Processes

4 Benzoin Reactions

5 Stetter Reactions

6 Miscellaneous Approaches

7 Conclusion

 
  • References


    • For selected recent reviews on NHC catalysis, see:
    • 1a Izquierdo J, Hutson GE, Cohen DT, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 11686
    • 1b Bugaut X, Glorius F. Chem. Soc. Rev. 2012; 41: 3511
    • 1c Grossmann A, Enders D. Angew. Chem. Int. Ed. 2012; 51: 314
    • 1d Cohen DT, Scheidt KA. Chem. Sci. 2012; 3: 53
    • 1e Mahatthananchai J, Bode JW. Chem. Sci. 2012; 3: 192
    • 1f Douglas J, Churchill G, Smith AD. Synthesis 2012; 44: 2295
    • 1g Ryan SJ, Candish L, Lupton DW. Chem. Soc. Rev. 2013; 42: 4906
    • 1h De Sarkar S, Biswas A, Samanta RC, Studer A. Chem. Eur. J. 2013; 19: 4664
    • 1i Hopkinson MN, Richter C, Schedler M, Glorius F. Nature 2014; 510: 485
    • 1j Chauhan P, Enders D. Angew. Chem. Int. Ed. 2014; 53: 1485
    • 1k Mahatthananchai J, Bode JW. Acc. Chem. Res. 2014; 47: 696
    • 1l Flanigan DM, Romanov-Michailidis F, White NA, Rovis T. Chem. Rev. 2015; 115: 9307
    • 1m Menon RS, Biju AT, Nair V. Chem. Soc. Rev. 2015; 44: 5040
    • 1n Menon RS, Biju AT, Nair V. Beilstein J. Org. Chem. 2016; 12: 444
    • 1o Wang MH, Scheidt KA. Angew. Chem. Int. Ed. 2016; 55: 14912
    • 1p Ren Q, Li M, Yuan L, Wang J. Org. Biomol. Chem. 2017; 15: 4731
    • 1q Chen X.-Y, Liu Q, Chauhan P, Enders D. Angew. Chem. Int. Ed. 2018; 57: 3862
    • 1r Zhao M, Zhang Y.-T, Chen J, Zhou L. Asian J. Org. Chem. 2018; 7: 54
    • 2a Yang S, Fang X. Curr. Org. Synth. 2017; 14: 654
    • 2b Wang Z, Pan D, Li T, Jin Z. Chem. Asian J. 2018; 13: 2149
    • 2c Chen S, Shi Y.-H, Wang M. Chem. Asian J. 2018; 13: 2184
  • 3 Moss GP. Pure Appl. Chem. 1996; 68: 2193

    • For selected reviews on KR reactions, see:
    • 4a Kagan HB, Fiaud JC. Top. Stereochem. 1988; 18: 249
    • 4b Kagan HB. Tetrahedron 2001; 57: 2449
    • 4c Faber K. Chem. Eur. J. 2001; 7: 5004
    • 4d Keith JM, Larrow JF, Jacobsen EN. Adv. Synth. Catal. 2001; 343: 5
    • 4e Robinson DE. J. E, Bull SD. Tetrahedron: Asymmetry 2003; 14: 1407
    • 4f Vedejs E, Jure M. Angew. Chem. Int. Ed. 2005; 44: 3974
    • 4g Pellissier H. Adv. Synth. Catal. 2011; 353: 1613
    • 4h Krasnov VP, Gruzdev DA, Levit GL. Eur. J. Org. Chem. 2012; 1471
    • 4i Pellissier H. In Separation of Enantiomers: Synthetic Methods, 1st ed. Todd M. Wiley-VCH; Weinheim: 2014: 75
    • 4j Ma G, Sibi MP. Chem. Eur. J. 2015; 21: 11644
    • 4k Petersen KS. Asian J. Org. Chem. 2016; 5: 308
    • 4l Gurubrahamam R, Cheng Y.-S, Huang W.-Y, Chen K. ChemCatChem 2016; 8: 86
    • 4m Yang H, Zheng W.-H. Tetrahedron Lett. 2018; 59: 583
    • 4n Pellissier H. Tetrahedron 2018; 74: 3459
  • 5 Greenhalgh MD, Taylor JE, Smith AD. Tetrahedron 2018; 74: 5554; and references quoted therein

    • For selected reviews on DKR, see:
    • 6a Ward RS. Tetrahedron: Asymmetry 1995; 6: 1475
    • 6b Pellissier H. Tetrahedron 2003; 59: 8291
    • 6c Pellissier H. Tetrahedron 2008; 64: 1563
    • 6d Pellissier H. Chirality from Dynamic Kinetic Resolution . The Royal Society of Chemistry; Cambridge: 2011
    • 6e Pellissier H. Tetrahedron 2011; 67: 3769
    • 6f Pellissier H. Adv. Synth. Catal. 2011; 353: 659
    • 6g Nakano K, Kitamura M. In Separation of Enantiomers: Synthetic Methods, 1st ed. Todd M. Wiley-VCH; Weinheim: 2014: 161
    • 6h Kreituss I, Bode JW. Acc. Chem. Res. 2016; 49: 2807
    • 6i Pellissier H. Tetrahedron 2016; 72: 3133
    • 6j Li P, Hu X, Dong X.-Q, Zhang X. Molecules 2016; 21: 1327

      For selected reviews on desymmetrization, see:
    • 7a Díaz-de-Villegas MD, Gálvez JA, Badorrey R, López-Ram-de-Víu MP. Chem. Eur. J. 2012; 18: 13920
    • 7b Fernández-Pérez H, Etayo P, Lao JR, Núñez-Rico JL, Vidal-Ferran A. Chem. Commun. 2013; 49: 10666
    • 7c Kalstabakken KA, Harned AM. Tetrahedron 2014; 70: 9571
    • 7d Wang M, Feng M, Tang B, Jiang X. Tetrahedron Lett. 2014; 55: 7147
    • 7e Maertens G, Ménard MA, Canesi S. Synthesis 2014; 46: 1573
    • 7f Petersen KS. Tetrahedron Lett. 2015; 56: 6523
    • 7g Manna MS, Mukherjee S. Org. Biomol. Chem. 2015; 13: 18
    • 7h Zeng X.-P, Cao Z.-Y, Wang Y.-H, Zhou F, Zhou J. Chem. Rev. 2016; 116: 7330
    • 7i Borissov A, Davies TQ, Ellis SR, Fleming TA, Richardson MS. W, Dixon DJ. Chem. Soc. Rev. 2016; 45: 5474
    • 7j Horwitz MA, Johnson JS. Eur. J. Org. Chem. 2017; 1381
    • 7k Suzuki T. Tetrahedron Lett. 2017; 58: 4731
    • 7l Merad J, Candy M, Pons J.-M, Bressy C. Synthesis 2017; 49: 1938
    • 7m Nagib DA. Angew. Chem. Int. Ed. 2017; 56: 7354
    • 7n Inai M, Asakawa T, Kan T. Tetrahedron 2018; 59: 1343
    • 7o Shintani R. Synlett 2018; 29: 388
  • 8 Suzuki Y, Yamauchi K, Muramatsu K, Sato M. Chem. Commun. 2004; 2770
  • 9 For a review on organocatalytic enantioselective acyl transfer reactions, see: Müller CE, Schreiner PR. Angew. Chem. Int. Ed. 2011; 50: 6012
  • 10 Suzuki Y, Muramatsu K, Yamauchi K, Morie Y, Sato M. Tetrahedron 2006; 62: 302
  • 11 Kano T, Sasaki K, Maruoka K. Org. Lett. 2005; 7: 1347
  • 12 Chan A, Scheidt KA. Org. Lett. 2005; 7: 905
  • 13 Wang MH, Barsoum D, Schwamb CB, Cohen DT, Goess BC, Riedrich M, Chan A, Maki BE, Mishra RK, Scheidt KA. J. Org. Chem. 2017; 82: 4689
  • 14 De Sarkar S, Biswas A, Song CH, Studer A. Synthesis 2011; 1974
  • 15 Iwahana S, Iida H, Yashima E. Chem. Eur. J. 2011; 17: 8009
  • 16 Lu S, Poh SB, Siau WY, Zhao Y. Angew. Chem. Int. Ed. 2013; 52: 1731
  • 17 Lu S, Poh SB, Siau W.-Y, Zhao Y. Synlett 2013; 24: 1165
  • 18 Rong Z.-Q, Jia M.-Q, You S.-L. Org. Lett. 2011; 13: 4080
  • 19 Kuwano S, Harada S, Kang B, Oriez R, Yamaoka Y, Takasu K, Yamada K.-i. J. Am. Chem. Soc. 2013; 135: 11485
    • 20a De Sarkar S, Grimme S, Studer A. J. Am. Chem. Soc. 2010; 132: 1190
    • 20b Samanta RC, De Sarkar S, Fröhlich R, Grimme S, Studer A. Chem. Sci. 2013; 4: 2177
  • 21 Lu S, Poh SB, Zhao Y. Angew. Chem. Int. Ed. 2014; 53: 11041
  • 22 Dong S, Frings M, Zhang D, Guo Q, Daniliuc CG, Cheng H, Bolm C. Chem. Eur. J. 2017; 23: 13888
  • 23 Liu B, Yan J, Huang R, Wang W, Jin Z, Zanoni G, Zheng P, Yang S, Chi YR. Org. Lett. 2018; 20: 3447
  • 24 Maji R, Wheeler SE. J. Am. Chem. Soc. 2017; 139: 12441
  • 25 Bie J, Lang M, Wang J. Org. Lett. 2018; 20: 5866
  • 26 Zhao C, Li F, Wang J. Angew. Chem. Int. Ed. 2016; 55: 1820
  • 27 Reynolds NT, Read de Alaniz J, Rovis T. J. Am. Chem. Soc. 2004; 126: 9518
  • 28 Maki BE, Chan A, Phillips EM, Scheidt KA. Org. Lett. 2007; 9: 371
  • 29 Li B.-S, Wang Y, Proctor RS. J, Jin Z, Chi YR. Chem. Commun. 2016; 52: 8313
  • 30 Huang Z, Huang X, Li B, Mou C, Yang S, Song B.-A, Chi YR. J. Am. Chem. Soc. 2016; 138: 7524
  • 31 Lu S, Song X, Poh SB, Yang H, Wong MW, Zhao Y. Chem. Eur. J. 2017; 23: 2275
  • 32 Li S, Liu B, Chen L, Li X, Cheng J.-P. Org. Chem. Front. 2018; 5: 1101
  • 33 Binanzer M, Hsieh S.-Y, Bode JW. J. Am. Chem. Soc. 2011; 133: 19698
  • 34 Allen SE, Hsieh S.-Y, Gutierrez O, Bode JW, Kozlowski MC. J. Am. Chem. Soc. 2014; 136: 11783
  • 35 Dong S, Frings M, Cheng H, Wen J, Zhang D, Raabe G, Bolm C. J. Am. Chem. Soc. 2016; 138: 2166
  • 36 Liu F, Bugaut X, Schedler M, Fröhlich R, Glorius F. Angew. Chem. Int. Ed. 2011; 50: 12626
    • 37a Phan DH. T, Kou KG. M, Dong VM. J. Am. Chem. Soc. 2010; 132: 16354
    • 37b Bugaut X, Liu F, Glorius F. J. Am. Chem. Soc. 2011; 133: 8130
  • 38 Wadamoto M, Phillips EM, Reynolds TE, Scheidt KA. J. Am. Chem. Soc. 2007; 129: 10098
  • 39 Phillips EM, Wadamoto M, Scheidt KA. Synthesis 2009; 687
  • 40 Phillips EM, Roberts JM, Scheidt KA. Org. Lett. 2010; 12: 2830
  • 41 Wu T.-S, Kao M.-S, Wu P.-L, Lin F.-W, Shi L.-S, Liou M.-J, Li C.-Y. Chem. Pharm. Bull. 1999; 47: 375
  • 42 Reddi Y, Sunoj RB. Org. Lett. 2012; 14: 2810
  • 43 Cohen DT, Eichman CC, Phillips EM, Zarefsky ER, Scheidt KA. Angew. Chem. Int. Ed. 2012; 51: 7309
  • 44 Johnston RC, Cohen DT, Eichman CC, Scheidt KA, Cheong PH.-Y. Chem. Sci. 2014; 5: 1974
  • 45 Cohen DT, Johnston RC, Rosson NT, Cheong PH.-Y, Scheidt KA. Chem. Commun. 2015; 51: 2690
  • 46 Mondal S, Mukherjee S, Das TK, Gonnade R, Biju AT. ACS Catal. 2017; 7: 3995

    • For reviews, see:
    • 47a Dehli JR, Gotor V. Chem. Soc. Rev. 2002; 31: 365
    • 47b Miller LC, Sarpong R. Chem. Soc. Rev. 2011; 40: 4550
  • 48 Chen X.-Y, Li S, Liu Q, Kumar M, Peuronen A, Rissanen K, Enders D. Chem. Eur. J. 2018; 24: 9735
  • 49 Ema T, Oue Y, Akihara K, Miyazaki Y, Sakai T. Org. Lett. 2009; 11: 4866
  • 50 Ema T, Akihara K, Obayashi R, Sakai T. Adv. Synth. Catal. 2012; 354: 3283
  • 51 Li Y, Yang S, Wen G, Lin Q, Zhang G, Qiu L, Zhang X, Du G, Fang X. J. Org. Chem. 2016; 81: 2763
  • 52 Ozboya KE, Rovis T. Chem. Sci. 2011; 2: 1835
  • 53 Goodman CG, Johnson JS. J. Am. Chem. Soc. 2014; 136: 14698
  • 54 Mengel A, Reiser O. Chem. Rev. 1999; 99: 1191
    • 55a Evans DA, Siska SJ, Cee VJ. Angew. Chem. Int. Ed. 2003; 42: 1761
    • 55b Cee VJ, Cramer CJ, Evans DA. J. Am. Chem. Soc. 2006; 128: 2920
  • 56 Dudding T, Houk KN. Proc. Natl. Acad. Sci. U.S.A. 2004; 101: 5770
  • 57 Zhang G, Yang S, Zhang X, Lin Q, Das DK, Liu J, Fang X. J. Am. Chem. Soc. 2016; 138: 7932
  • 58 Vasamsetty L, Kong X, Meng M, Yang S, Xu W, Reddy PS, Fang X. Chem. Asian J. 2018; 13: 3838
  • 59 Liu Q, Rovis T. J. Am. Chem. Soc. 2006; 128: 2552
  • 60 Liu Q, Rovis T. Org. Process Res. Dev. 2007; 11: 598
  • 61 Jia M.-Q, You S.-L. Chem. Commun. 2012; 48: 6363
  • 62 Jia M.-Q, Liu C, You S.-L. J. Org. Chem. 2012; 77: 10996
  • 63 Jia M.-Q, You S.-L. Synlett 2013; 24: 1201
  • 64 Lin Q, Li Y, Das DK, Zhang G, Zhao Z, Yang S, Fang X. Chem. Commun. 2016; 52: 6459
  • 65 Li G.-Q, Li Y, Dai L.-X, You S.-L. Org. Lett. 2007; 9: 3519
  • 66 Li G.-Q, Li Y, Dai L.-X, You S.-L. Adv. Synth. Catal. 2008; 350: 1258
  • 67 Shao P.-L, Chen X.-Y, Ye S. Angew. Chem. Int. Ed. 2010; 49: 8412
  • 68 Wang M, Huang Z, Xu J, Chi YR. J. Am. Chem. Soc. 2014; 136: 1214
  • 69 Zhu Z.-Q, Zheng X.-L, Jiang N.-F, Wan X, Xiao J.-C. Chem. Commun. 2011; 47: 8670
  • 70 Wu Z, Wang J. ACS Catal. 2017; 7: 7647

    • For recent reviews, see:
    • 71a Terada M. Synthesis 2010; 1929
    • 71b Zamfir A, Schenker S, Freund M, Tsogoeva SB. Org. Biomol. Chem. 2010; 8: 5262
    • 71c Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
  • 72 Goodman CG, Walker MM, Johnson JS. J. Am. Chem. Soc. 2015; 137: 122
  • 73 Wu Z, Li F, Wang J. Angew. Chem. Int. Ed. 2015; 54: 1629
  • 74 Kobayashi S, Sugiura M, Kitagawa H, Lam WW.-L. Chem. Rev. 2002; 102: 2227
  • 75 Chen X, Fong JZ. M, Xu J, Mou C, Lu Y, Yang S, Song B.-A, Chi YR. J. Am. Chem. Soc. 2016; 138: 7212