Synthesis 2020; 52(05): 645-659
DOI: 10.1055/s-0039-1690740
short review
© Georg Thieme Verlag Stuttgart · New York

Transition-Metal-Catalyzed Suzuki–Miyaura-Type Cross-Coupling Reactions of π-Activated Alcohols

Sunisa Akkarasamiyo
a   Department of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden   Email: Joseph.samec@su.se
c   Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
,
Somsak Ruchirawat
b   Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok 10210, Thailand
c   Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
,
Poonsaksi Ploypradith
b   Program in Chemical Sciences, Chulabhorn Graduate Institute, Chulabhorn Royal Academy, 906 Kamphaeng Phet 6 Road, Talat Bang Khen, Laksi, Bangkok 10210, Thailand
c   Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok 10210, Thailand
,
Joseph S. M. Samec
a   Department of Organic Chemistry, Stockholm University, 106 91 Stockholm, Sweden   Email: Joseph.samec@su.se
› Author Affiliations
J.S. thanks the Swedish Research Council, Formas and Stiftelsen Olle Engkvists Byggmästare for financial support.
Further Information

Publication History

Received: 13 September 2019

Accepted after revision: 21 October 2019

Publication Date:
07 January 2020 (online)


Professor Jacques Muzart is gratefully acknowledged for his immense contributions to the understanding of the C–O bond cleavage in alcohols.

Abstract

The Suzuki–Miyaura reaction is one of the most powerful tools for the formation of carbon–carbon bonds in organic synthesis. The utilization of alcohols in this powerful reaction is a challenging task. This short review covers progress in the transition-metal-catalyzed Suzuki­–Miyaura-type cross-coupling reaction of π-activated alcohol, such as aryl, benzylic, allylic, propargylic and allenic alcohols, between 2000 and June 2019.

1 Introduction

2 Suzuki–Miyaura Cross-Coupling Reactions of Aryl Alcohols

2.1 One-Pot Reactions with Pre-activation of the C–O Bond

2.1.1 Palladium Catalysis

2.1.2 Nickel Catalysis

2.2 Direct Activation of the C–O Bond

2.2.1 Nickel Catalysis

3 Suzuki–Miyaura-Type Cross-Coupling Reactions of Benzylic Alcohols

4 Suzuki–Miyaura-Type Cross-Coupling Reactions of Allylic Alcohols

4.1 Rhodium Catalysis

4.2 Palladium Catalysis

4.3 Nickel Catalysis

4.4 Stereospecific Reactions

4.5 Stereoselective Reactions

4.6 Domino Reactions

5 Suzuki–Miyaura-Type Cross-Coupling Reactions of Propargylic Alcohols

5.1 Palladium Catalysis

5.2 Rhodium Catalysis

6 Suzuki–Miyaura-Type Cross-Coupling Reactions of Allenic Alcohols

6.1 Palladium Catalysis

6.2 Rhodium Catalysis

7 Conclusions

 
  • References

    • 1a Miyaura N, Suzuki A. Chem. Rev. 1995; 95: 2457
    • 1b Willemse T, Schepens W, van Vlijmen HW. T, Maes BU. W, Ballet S. Catalysts 2017; 7: 74
    • 1c Koshvandi AT. K, Heravi MM, Momeni T. Appl. Organomet. Chem. 2018; 32: e4210
    • 1d Devendar P, Qu R.-Y, Kang W.-M, He B, Yang G.-F. J. Agric. Food Chem. 2018; 66
    • 1e Heravi MM, Hashemi E. Tetrahedron 2012; 68: 9145
    • 1f Maluenda I, Navarro O. Molecules 2015; 20: 7528
    • 2a Miyaura N, Suzuki A. J. Chem. Soc., Chem. Commun. 1979; 866
    • 2b Miyaura N, Yamada K, Suzuki A. Tetrahedron Lett. 1979; 3437
    • 3a Han F.-S. Chem. Soc. Rev. 2013; 42: 5270
    • 3b Yang H, Yang X, Tang W. Tetrahedron 2016; 72: 6143
    • 3c Guo B, Fu C, Ma S. Eur. J. Org. Chem. 2012; 4034
  • 4 Seechurn CC. C. J, Kitching MO, Colacot TJ, Snieckus V. Angew. Chem. Int. Ed. 2012; 51: 5062
    • 5a Constable DJ. C, Dunn PJ, Hayler JD, Humphrey GR, Leazer JL. Jr, Linderman RJ, Lorenz K, Manley J, Pearlman BA, Wells A, Zaks A, Zhang TY. Green Chem. 2007; 9: 411
    • 5b Trost BM. Science 1991; 254: 1471
    • 5c Sheldon RA. Pure Appl. Chem. 2000; 72: 1233
    • 5d Sheldon RA. Green Chem. 2007; 9: 1273
    • 5e Sheldon RA. Chem. Commun. 2008; 3352
    • 6a Sawadjoon S, Samec JS. M. Org. Biomol. Chem. 2011; 9: 2548
    • 6b Sawadjoon S, Orthaber A, Sjöberg PJ. R, Eriksson L, Samec JS. M. Organometallics 2014; 33: 249
    • 6c Sawadjoon S, Sjçberg PJ. R, Orthaber A, Matsson O, Samec JS. M. Chem. Eur. J. 2014; 20: 1520
    • 6d Bunrit A, Sawadjoon S, Tšupova S, Sjöberg PJ. R, Samec JS. M. J. Org. Chem. 2016; 81: 1450
    • 6e Akkarasamiyo S, Sawadjoon S, Orthaber A, Samec JS. M. Chem. Eur. J. 2018; 24: 3488
    • 6f Rukkijakan T, Akkarasamiyo S, Sawadjoon S, Samec JS. M. J. Org. Chem. 2018; 83: 4099
    • 6g Akkarasamiyo S, Margalef J, Samec JS. M. Org. Lett. 2019; 21: 4782
    • 6h Biswas S, Samec JS. M. Chem. Asian J. 2013; 8: 974
    • 6i Bunrit A, Dahlstrand C, Olsson SK, Srifa P, Huang G, Orthaber A, Sjöberg PJ. R, Biswas S, Himo F, Samec JS. M. J. Am. Chem. Soc. 2015; 137: 4646
    • 6j Watile RA, Bunrit A, Margalef J, Akkarasamiyo S, Ayub R, Lagerspets E, Biswas S, Repo T, Samec JS. M. Nat. Commun. 2019; 10: 3826
  • 7 Kang F.-A, Sui Z, Murray WV. J. Am. Chem. Soc. 2008; 130: 11300
  • 8 Mehta VP, Modha SG, van der Eycken EV. J. Org. Chem. 2010; 75: 976
  • 9 Li S.-M, Huang J, Chena G.-J, Han F.-S. Chem. Commun. 2011; 47: 12840
  • 10 Ikawa T, Saito K, Akai S. Synlett 2012; 23: 2241
  • 11 Chen G.-J, Huang J, Gao L.-X, Han F.-S. Chem. Eur. J. 2011; 17: 4038
  • 12 Chen L, Lang H, Fang L, Zhu M, Liu J, Yu J, Wang L. Eur. J. Org. Chem. 2014; 4953
  • 13 Yu D.-G, Shi Z.-J. Angew. Chem. Int. Ed. 2011; 50: 7097
    • 14a Mondal S, Panda G. RSC Adv. 2014; 4: 28317
    • 14b Gessner, T.; Mayer, U. Triarylmethane and Diarylmethane Dyes, In Ullmann’s Encyclopedia of Industrial Chemistry, 7th ed. [Online]; Wiley-VCH, Posted June 15, 2000.
    • 15a Bandini M, Tragni M. Org. Biomol. Chem. 2009; 7: 1501
    • 15b McCubbin JA, Krokhin OV. Tetrahedron Lett. 2010; 51: 2447
  • 16 Cao Z.-C, Yu D.-G, Zhu R.-Y, Wei J.-B, Shi Z.-J. Chem. Commun. 2015; 51: 2683
  • 17 Rao HS. P, Rao AV. B. J. Org. Chem. 2015; 80: 1506
  • 18 Rao HS. P, Rao AV. B. Beilstein J. Org. Chem. 2016; 12: 496
  • 19 Kabalka GW, Dong G, Venkataiah B. Org. Lett. 2003; 5: 893
  • 20 Miura T, Takahashi Y, Murakami M. Chem. Commun. 2007; 595
    • 21a Tsukamoto H, Sato M, Kondo Y. Chem. Commun. 2004; 1200
    • 21b Tsukamoto H, Uchiyama T, Suzuki T, Kondo Y. Org. Biomol. Chem. 2008; 6: 3005
  • 22 Kayaki Y, Koda T, Ikariya T. Eur. J. Org. Chem. 2004; 4989
  • 23 Yamamoto T, Akimoto M, Saito O, Yamamoto A. Organometallics 1986; 5: 1559
  • 24 Manabe K, Nakada K, Aoyama N, Kobayashi S. Adv. Synth. Catal. 2005; 347: 1499
  • 25 Zhang Y, Yin S.-C, Lu J.-M. Tetrahedron 2015; 71: 544
    • 26a Tabélé C, Curti C, Primas N, Kabri Y, Remusat V, Vanelle P. Synthesis 2015; 47: 3339
    • 26b Tabélé C, Curti C, Kabri Y, Primas N, Vanelle P. Molecules 2015; 20: 22890
  • 27 Jiménez-Aquino A, Flegeau EF, Schneider U, Kobayashi S. Chem. Commun. 2011; 47: 9456
  • 28 Nazari SH, Bourdeau JE, Talley MR, Valdivia-Berroeta GA, Smith SJ, Michaelis DJ. ACS Catal. 2018; 8: 86
  • 29 Wang G, Gan Y, Liu Y. Chin. J. Chem. 2018; 36: 916
  • 30 Ye J, Zhao J, Xu J, Mao Y, Zhang YJ. Chem. Commun. 2013; 49: 9761
  • 31 Granberg KL, Bäckvall J.-E. J. Am. Chem. Soc. 1992; 114: 6858
  • 32 Wu H.-B, Ma X.-T, Tian S.-K. Chem. Commun. 2014; 50: 219
  • 33 Wang F, Li S, Qu M, Zhao M.-X, Liu L.-J, Shi M. Chem. Commun. 2011; 47: 12813
  • 34 Hamilton JY, Sarlah D, Carreira EM. J. Am. Chem. Soc. 2013; 135: 994
  • 35 Hamilton JY, Sarlah D, Carreira EM. Angew. Chem. Int. Ed. 2013; 52: 7532
  • 37 Yoshida M, Gotou T, Ihara M. Tetrahedron Lett. 2004; 45: 5573
  • 38 Al-Jawaheri Y, Kimber MC. Org. Lett. 2016; 18: 3502
  • 39 Green NJ, Willis AC, Sherburn MS. Angew. Chem. Int. Ed. 2016; 55: 9244
  • 40 Xing J, Zhu Y, Lin X, Liu N, Shen Y, Lu T, Dou X. Adv. Synth. Catal. 2018; 360: 1595
  • 41 Yoshida M, Gotou T, Ihara M. Chem. Commun. 2004; 1124
  • 42 Yoshida M, Shoji Y, Shishido K. Org. Lett. 2009; 11: 1441
  • 43 Liu T, Dong J, Cao S.-J, Guo L.-C, Wu L. RSC Adv. 2014; 4: 61722
  • 44 Miura T, Shimizu H, Igarashi T, Murakami M. Org. Biomol. Chem. 2010; 8: 4074