Synlett 2020; 31(04): 309-314
DOI: 10.1055/s-0039-1691573
synpacts
© Georg Thieme Verlag Stuttgart · New York

Mechanical Interlocking of Macrocycles in Different Sequences

Ho Yu Au-Yeung
,
Antony Wing Hung Ng
Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. of China   Email: hoyuay@hku.hk
› Author Affiliations
This work is supported by the Croucher Foundation and by a grant from the Research Grants Council, University Grants Committee of the Hong Kong Special Administrative Region (SAR), China (Grant No. HKU 27300014).
Further Information

Publication History

Received: 09 December 2019

Accepted after revision: 27 December 2019

Publication Date:
20 January 2020 (online)


Abstract

Sequence isomerism is fundamental to the storage, transfer and expression of information in (bio)macromolecules and artificial polymers. Realization of sequence-specific properties in mechanically bonded molecules is extremely challenging due to the huge synthetic difficulty in the precise and controllable non-covalent interlocking of constitutionally different macrocycles in specific orders within a rotaxane or catenane. This Synpacts article highlights how sequence isomers of multicomponent rotaxanes and catenanes can be obtained by novel synthetic strategies and careful building block design.

 
  • References

  • 1 Bruns CJ, Stoddart JF. The Nature Of The Mechanical Bond: From Molecules To Machines . John Wiley & Sons; Hoboken: 2016

    • For reviews on rotaxanes, catenanes and knots, see
    • 3a Beves JE, Blight BA, Campbell CJ, Leigh DA, McBurney RT. Angew. Chem. Int. Ed. 2011; 50: 9260
    • 3b Gil-Ramírez G, Leigh DA, Stephens AJ. Angew. Chem. Int. Ed. 2015; 54: 6110
    • 3c Fielden SD. P, Leigh DA, Woltering SL. Angew. Chem. Int. Ed. 2017; 56: 11166
    • 4a Martens S, Landuyt A, Espeel P, Devreese B, Dawyndt P, Du Prez F. Nat. Commun. 2018; 9: 4451
    • 4b Lutz JF. Macromolecules 2015; 48: 4759
    • 4c Szaciłowski K. Chem. Rev. 2008; 108: 3481
  • 5 Zhu K, Baggi G, Loeb SJ. Nat. Chem. 2018; 10: 625
    • 6a Wang X.-Q, Li W.-J, Wang W, Yang H.-B. Chem. Commun. 2018; 54: 13303
    • 6b Au-Yeung HY, Yee C.-C, Ng AW. H, Hu K. Inorg. Chem. 2018; 57: 3475
  • 7 Fuller AM. L, Leigh DA, Lusby PJ. J. Am. Chem. Soc. 2010; 132: 4954
  • 8 Hayashi R, Slavik P, Mutoh Y, Kasama T, Saito S. J. Org. Chem. 2016; 81: 1175
    • 9a Yee C.-C, Ng AW. H, Au-Yeung HY. Chem. Commun. 2019; 55: 6169
    • 9b Ng AW. H, Yee CC, Wang K, Au-Yeung HY. Beilstein J. Org. Chem. 2018; 14: 1846
    • 9c Tong KL, Yee CC, Tse YC, Au-Yeung HY. Inorg. Chem. Front. 2016; 3: 348
    • 9d Ng AW. H, Au-Yeung HY. Chem. Asian J. 2019; 14: 1602
    • 10a Mock WL, Irra TA, Wepsiec JP, Manimaran TL. J. Org. Chem. 1983; 48: 3619
    • 10b Ke C, Smaldone RA, Kikuchi T, Li H, Davis AP, Stoddart JF. Angew. Chem. Int. Ed. 2013; 52: 381
    • 11a Wang K, Yee CC, Au-Yeung HY. Chem. Sci. 2016; 7: 2787
    • 11b Man JY. H, Au-Yeung HY. Beilstein J. Org. Chem. 2019; 15: 1829
  • 12 Ng AW. H, Yee C.-C, Au-Yeung HY. Angew. Chem. Int. Ed. 2019; 58: 17375
    • 13a Mock WL, Shih NY. J. Org. Chem. 1986; 51: 4440
    • 13b Lagona J, Mukhopadhyay P, Chakrabarti S, Isaacs L. Angew. Chem. Int. Ed. 2005; 44: 4844
    • 13c Rekharsky MV, Inoue Y. Chem. Rev. 1998; 98: 1875
    • 13d Connors KA. Chem. Rev. 1997; 97: 1325