Synlett 2020; 31(17): 1639-1648
DOI: 10.1055/s-0040-1707078
synpacts
© Georg Thieme Verlag Stuttgart · New York

Non-planar Boron Lewis Acids Taking the Next Step: Development of Tunable Lewis Acids, Lewis Superacids and Bifunctional Catalysts

Aurélien Chardon
,
Arnaud Osi
,
Damien Mahaut
,
Ali Ben Saida
,
Guillaume Berionni
Department of Chemistry, Namur Institute of Structured Matter, University of Namur, 61, rue de Bruxelles, 5000 Namur, Belgium   Email: guillaume.berionni@unamur.be
› Author Affiliations
We thank the University of Namur, the Namur Institute of Structured Matter (NISM), the Fond National de la Recherche Scientifique (MIS impulsion grant; FNRS grant F.4513.18 for G.B.) and the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA PhD grants for A.O. and D.M.) for financial support.
Further Information

Publication History

Received: 08 May 2020

Accepted after revision: 27 May 2020

Publication Date:
09 July 2020 (online)


This paper is dedicated to Prof. Paul Knochel with respect and admiration

Abstract

Although boron Lewis acids commonly adopt a trigonal planar geometry, a number of compounds in which the trivalent boron atom is located in a pyramidal environment have been described. This review will highlight the recent developments of the chemistry and applications of non-planar boron Lewis acids, including a series of non-planar triarylboranes derived from the triptycene core. A thorough analysis of the properties and of the influence of the pyramidalization of boron Lewis acids on their stereoelectronic properties and reactivities is presented based on recent theoretical and experimental studies.

1 Non-planar Trialkylboranes

2 Non-planar Alkyl and Aryl-Boronates

3 Non-planar Triarylboranes and Alkenylboranes

3.1 Previous Investigations on Bora Barrelenes and Triptycenes

3.2 Recent Work on Boratriptycenes from Our Research Group

4 Applications of Non-planar Boranes

4.1 Non-planar Alkyl Boranes and Boronates

4.2 Non-planar Triarylboranes (Boratriptycenes)

5 Other Non-planar Group 13 Lewis Acids

6 Further Work and Perspectives

 
  • References

    • 1a Hall DG. Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials. Wiley-VCH; Weinheim: 2011
    • 1b Fernández E, Whiting A. Synthesis and Application of Organoboron Compounds . Springer; New York: 2015
    • 1c Piers WE. Adv. Organomet. Chem. 2005; 52: 1
    • 1d Piers WE, Chivers T. Chem. Soc. Rev. 1997; 26: 345
    • 1e Wakamiya A, Yamaguchi S. Bull. Chem. Soc. Jpn. 2015; 88: 1357
    • 2a Sivaev IB, Bregadze VI. Coord. Chem. Rev. 2014; 75: 270
    • 2b Davydova EI, Sevastianova TN, Timoshkin AY. Coord. Chem. Rev. 2015; 91: 297
    • 2c Bouhadir G, Bourissou D. Chem. Soc. Rev. 2004; 33: 210
    • 2d Stephan DW, Erker G. Angew. Chem. Int. Ed. 2015; 54: 6400

      For recent reviews, see:
    • 3a Wade CR, Broomsgrove AE. J, Aldridge S, Gabbaï F. Chem. Rev. 2010; 110: 3958
    • 3b Jäkle F. Chem. Rev. 2010; 110: 3985
    • 3c Lorbach A, Hübner A, Wagner M. Dalton Trans. 2012; 6048
    • 3d Ji L, Griesbeck S, Marder TB. Chem. Sci. 2017; 8: 846
    • 3e Hirai M, Tanaka N, Sakai M, Yamaguchi S. Chem. Rev. 2019; 119: 8291
    • 4a Kitamoto Y, Kobayashi F, Suzuki T, Miyata Y, Kita H, Funaki K, Oj S. Dalton Trans. 2019; 2118
    • 4b Schaub TA, Padberg K, Kivala M. J. Phys. Org. Chem. 2020; 33: e4022
  • 5 Ando M, Sakai M, Ando N, Hirai M, Yamaguchi S. Org. Biomol. Chem. 2019; 17: 5500
  • 6 Paddon-Row MN, Radom L, Gregory AR. J. Chem. Soc., Chem. Commun. 1976; 427
  • 7 Schulman JM, Disch RL. J. Mol. Struct.: THEOCHEM 1995; 338: 109
    • 8a Borthakur B, Das S, Phukan AK. J. Chem. Commun. 2018; 54: 4975
    • 8b During the editing process of this manuscript, similar structures have been studied by the group of Alkorta et al. and were predicted to form stable complexes with the dihydrogen molecule. Comparison with other non-planar structures showed that the pyramidalization of the boron atom was a key parameter for the formation of these complexes, see ref: Alkorta I, Elguero J, Oliva-Enrich JM. Struct Chem 2020; DOI: doi 10.1007/s11224-020-01556-2.
    • 9a Mikhailov BM. Pure Appl. Chem. 1974; 39: 505
    • 9b Bubnov YN, Gurskii ME, Pershin DG, Lyssenko KA, Antipin MY. Russ. Chem. Bull. 1998; 47: 1771
    • 9c Gurskii ME, Ponomarev VA, Lyssenko KA, Antipin MY, Renaud P, Bubnov YN. Mendeleev Commun. 2003; 13: 121
    • 9d Erdyakov SY, Ignatenko AV, Potapova TV, Lyssenko KA, Gurskii ME, Bubnov YN. Org. Lett. 2009; 11: 2872
    • 9e Kaszynski P, Pakhomov S, Gurskii ME, Erdyakov SY, Starikova ZA, Lyssenko KA, Antipin MY, Young VG, Bubnov YN. J. Org. Chem. 2009; 74: 1709
    • 9f Vishnevskiy YV, Abaev MA, Rykov AN, Gurskii ME, Belyakov PA, Erdyakov SY, Bubnov YN, Mitzel NW. Chem. Eur. J. 2012; 18: 10585
  • 10 Wrackmeyer B, Tok OL. Z. Naturforsch., B 2005; 60: 259
  • 11 Shanmukaraj D, Grugeon S, Gachot G, Laruelle S, Mathiron D, Tarascon J.-M, Armand M. J. Am. Chem. Soc. 2010; 132: 3055
  • 12 Zhu H, Chen EY.-X. Inorg. Chem. 2007; 46: 1481
  • 13 Müller E, Bürgi H-B. Helv. Chim. Acta 1987; 70: 499
    • 14a Yasuda M, Yoshioka S, Nakajima H, Chiba K, Baba A. Org. Lett. 2008; 10: 929
    • 14b Yasuda M, Nakajima H, Takeda R, Yoshioka S, Yamasaki S, Chiba K, Baba A. Chem. Eur. J. 2011; 17: 3856
    • 14c Konishi A, Nakaoka K, Nakajima H, Chiba K, Baba A, Yasuda M. Chem. Eur. J. 2017; 23: 5219
  • 15 Wood TK, Piers WE, Keay BA, Parvez M. Org. Lett. 2006; 8: 2875
  • 16 Mück LA, Timoshkin AY, Frenking G. Inorg. Chem. 2012; 51: 640
  • 17 Mück LA, Timoshkin AY, von Hopffgarten M, Frenking G. J. Am. Chem. Soc. 2009; 131: 3942
  • 18 For a seminal study on the reorganization energy of haloboranes, see: Brown DG, Drago RS, Bolles TF. J. Am. Chem. Soc. 1968; 90: 5706
    • 19a Chardon A, Osi A, Mahaut D, Doan T.-H, Tumanov N, Wouters J, Fusaro L, Champagne B, Berionni G. Angew. Chem. Int. Ed. 2020; DOI: 10.1002/anie.202003119.
    • 19b For a seminal example of tetraarylboron-ate-complexes see: Wittig G, Keicher G, Rücker A, Raff P. Justus Liebigs Ann. Chem. 1949; 563: 110
    • 20a Mayer U, Gutmann V, Gerger W. Monatsh. Chem. 1975; 106: 1235
    • 20b Gutmann V. Coord. Chem. Rev. 1976; 18: 225
    • 20c Beckett MA, Brassington DS, Light ME, Hursthouse MB. J. Chem. Soc., Dalton Trans. 2001; 1768
    • 20d Beckett MA, Strickland GC, Holland JR, Sukumar Varma K. Polymer 1996; 37: 4629
  • 21 Greb L. Chem. Eur. J. 2018; 24: 17881
    • 22a Jupp AR, Johnstone TC, Stephan DW. Dalton Trans. 2018; 7029
    • 22b Jupp AR, Johnstone TC, Stephan DW. Inorg. Chem. 2018; 57: 14764
    • 22c Szentpály LV, Liu S, Parr RG. J. Am. Chem. Soc. 1999; 121: 1922
    • 22d Mortier WJ, Yang W. J. Am. Chem. Soc. 1986; 108: 5708
    • 22e Perez P, Toro-Labbé A, Aizman A, Contreras R. J. Org. Chem. 2002; 67: 4747
    • 22f Chattaraj PK, Sarkar U, Roy DR. Chem. Rev. 2006; 106: 2065
  • 23 Ben Saida A, Chardon A, Osi A, Tumanov N, Adjieufack AI, Champagne B, Berionni G. Angew. Chem. Int. Ed. 2019; 58: 16889
    • 24a Konishi S, Iwai T, Sawamura M. Organometallics 2018; 37: 1876
    • 24b Drover MW, Nagata K, Peters JC. Chem. Commun. 2018; 54: 7916
  • 25 Böhrer H, Trapp N, Himmel D, Schleep M, Krossing I. Dalton Trans. 2015; 7489
  • 26 Großekappenberg H, Reißmann M, Schmidtmann M, Meller T. Organometallics 2015; 34: 4952
  • 27 Gusev DG, Ozerov OV. Chem. Eur. J. 2011; 17: 634
  • 28 Wagner CE, Mohler ML, Kang GS, Miller DD, Geisert EE, Chang Y.-A, Fleischer EB, Shea KJ. J. Med. Chem. 2003; 46: 2823
  • 30 El-Hamdi M, Timoshkin AY. J. Comput. Chem. 2019; 9999
  • 31 El-Hamdi M, Solà M, Poater J, Timoshkin AY. J. Comput. Chem. 2016; 37: 1355
  • 32 Kalita AJ, Rohman SS, Kashyap C, Ullah SS, Guha AK. Polyhedron 2020; 175: 114193
    • 33a Timoshkin AY, Morokuma K. Phys. Chem. Chem. Phys. 2012; 14: 14911
    • 33b For another recent quantum chemical study of boroadamantane derivatives with dihydrogen, see: Olivia-Enrich J.-M, Alkorta I, Elguero J. Molecules 2020; 25: 1042
  • 34 Gilbert TM. Dalton Trans. 2012; 9046

    • For selected examples see: borenium cations
    • 35a De Vries TT, Prokofjievs A, Vedejs E. Chem. Rev. 2012; 112: 4246
    • 35b Bourke SC, Conroy KD, Piers WE. Angew. Chem. Int. Ed. 2005; 44: 5016
    • 35c Silyliums cations: Walker JC. L, Klare HF. T, Oeistreich M. Nat. Rev. Chem. 2020; 4: 54
    • 35d Klare HF. T, Oeistreich M. Dalton Trans. 2010; 9176
    • 35e Siegel JS. Nat. Rev. Chem. 2020; 4: 4
    • 35f Phosphonium cations: Caputo CB, Winkelhaus D, Dobrovetsky R, Hounjet LJ, Stephan DW. Dalton Trans. 2015; 12256
    • 35g Caputo CB, Hounjet LJ, Dobrovetsky R, Stephan DW. Science 2013; 341: 1374
    • 36a Bertini F, Lyaskovskyy V, Timmer BJ. J, De Kanter FJ. J, Lutz M, Ehlers AW, Slootweg JC, Lammertsma K. J. Am. Chem. Soc. 2012; 134: 204
    • 36b Ullrich M, Lough AJ, Stephan DW. J. Am. Chem. Soc. 2009; 131: 52
    • 36c Welch GC, Cabrera L, Chase PA, Hollink E, Masuda JD, Wei P, Stephan DW. Dalton Trans. 2007; 3407
  • 37 Boom DH. A, Jupp AR, Slootweg JC. Chem. Eur. J. 2019; 25: 9133