Synthesis 2022; 54(01): 4-32
DOI: 10.1055/s-0040-1719831
review

Recent Progress in Metal-Catalyzed [2+2+2] Cycloaddition Reactions

Pascal Matton
,
Steve Huvelle
,
Mansour Haddad
,
Phannarath Phansavath
,
We thank the CNRS (Centre National de la Recherche Scientifique) and the MESRI (Ministère de l’Enseignement Supérieur, de la Recherche et de l’Innovation) for financial support. P. M. and S. H. are grateful to Chimie ParisTech for financial support.


Abstract

Metal-catalyzed [2+2+2] cycloaddition is a powerful tool that allows rapid construction of functionalized 6-membered carbo- and heterocycles in a single step through an atom-economical process with high functional group tolerance. The reaction is usually regio- and chemoselective although selectivity issues can still be challenging for intermolecular reactions involving the cross-[2+2+2] cycloaddition of two or three different alkynes and various strategies have been developed to attain high selectivities. Furthermore, enantioselective [2+2+2] cycloaddition is an efficient means to create central, axial, and planar chirality and a variety of chiral organometallic complexes can be used for asymmetric transition-metal-catalyzed inter- and intramolecular reactions. This review summarizes the recent advances in the field of [2+2+2] cycloaddition.

1 Introduction

2 Formation of Carbocycles

2.1 Intermolecular Reactions

2.1.1 Cyclotrimerization of Alkynes

2.1.2 [2+2+2] Cycloaddition of Two Different Alkynes

2.1.3 [2+2+2] Cycloaddition of Alkynes/Alkenes with Alkenes/Enamides

2.2 Partially Intramolecular [2+2+2] Cycloaddition Reactions

2.2.1 Rhodium-Catalyzed [2+2+2] Cycloaddition

2.2.2 Molybdenum-Catalyzed [2+2+2] Cycloaddition

2.2.3 Cobalt-Catalyzed [2+2+2] Cycloaddition

2.2.4 Ruthenium-Catalyzed [2+2+2] Cycloaddition

2.2.5 Other Metal-Catalyzed [2+2+2] Cycloaddition

2.3 Totally Intramolecular [2+2+2] Cycloaddition Reactions

3 Formation of Heterocycles

3.1 Cycloaddition of Alkynes with Nitriles

3.2 Cycloaddition of 1,6-Diynes with Cyanamides

3.3 Cycloaddition of 1,6-Diynes with Selenocyanates

3.4 Cycloaddition of Imines with Allenes or Alkenes

3.5 Cycloaddition of (Thio)Cyanates and Isocyanates

3.6 Cycloaddition of 1,3,5-Triazines with Allenes

3.7 Cycloaddition of Aldehydes with Enynes or Allenes/Alkenes

3.8 Totally Intramolecular [2+2+2] Cycloaddition Reactions

4 Conclusion



Publication History

Received: 20 July 2021

Accepted: 29 July 2021

Article published online:
27 September 2021

© 2021. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Berthelot M. Justus Liebigs Ann. Chem. 1866; 139: 272
    • 1b Berthelot M. C R. Hebd. Seances Acad. Sci. 1866; 63: 905
  • 2 Reppe W, Schweckendiek WJ. Justus Liebigs Ann. Chem. 1948; 560: 104
  • 3 Hill JE, Balaich G, Fanwick PE, Rothwell IP. Organometallics 1993; 12: 2911
  • 4 Vollhardt KP. C. Angew. Chem. Int. Ed. Engl. 1984; 23: 539
  • 5 Ojima I, Tzamarioudaki M, Li Z, Donovan RJ. Chem. Rev. 1996; 96: 635
  • 6 Lautens M, Klute W, Tam W. Chem. Rev. 1996; 96: 49
  • 7 Saito S, Yamamoto Y. Chem. Rev. 2000; 100: 2901
  • 8 Kirchner K, Calhorda MJ, Schmid R, Veiros LF. J. Am. Chem. Soc. 2003; 125: 11721
  • 9 Rubin M, Sromek AW, Gevorgyan V. Synlett 2003; 2265
  • 10 Kotha S, Brahmachary E, Lahiri K. Eur. J. Org. Chem. 2005; 2005: 4741
  • 11 Yamamoto Y. Curr. Org. Chem. 2005; 9: 503
  • 12 Gandon V, Aubert C, Malacria M. Chem. Commun. 2006; 2209
  • 13 Tanaka K. Synlett 2007; 1977
  • 14 Agenet N, Buisine O, Slowinski F, Gandon V, Aubert C, Malacria M. In Organic Reactions, Vol. 68. Overman LE. John Wiley & Sons; Hoboken: 2007: 1
  • 15 Hess W, Treutwein J, Hilt G. Synthesis 2008; 3537
    • 16a Varela J, Saá C. Synlett 2008; 2571
    • 16b Varela JA, Saá C. J. Organomet. Chem. 2009; 694: 143
  • 17 Galan BR, Rovis T. Angew. Chem. Int. Ed. 2009; 48: 2830
  • 18 Pla-Quintana A, Roglans A. Molecules 2010; 15: 9230
  • 19 Handbook of Cyclization Reactions . Ma S. Wiley-VCH; Weinheim: 2010
  • 20 Hua R, Abrenica MV. A, Wang P. Curr. Org. Chem. 2011; 15: 712
  • 21 Weding N, Hapke M. Chem. Soc. Rev. 2011; 40: 4525
  • 22 Wang C, Wan B. Chin. Sci. Bull. 2012; 57: 2338
  • 23 Yamamoto Y. In Transition-Metal-Mediated Aromatic Ring Construction . Tanaka K. John Wiley & Sons; Hoboken: 2013: 71
  • 24 Transition-Metal-Mediated Aromatic Ring Construction. Tanaka K. John Wiley & Sons; Hoboken: 2013
  • 25 Kumar P, Louie J. In Transition-Metal-Mediated Aromatic Ring Construction . Tanaka K. John Wiley & Sons; Hoboken: 2013: 37
  • 26 Okamoto S, Sugiyama Y. Synlett 2013; 24: 1044
  • 27 Thakur A, Louie J. Acc. Chem. Res. 2015; 48: 2354
  • 28 Jungk P, Täufer T, Thiel I, Hapke M. Synthesis 2016; 48: 2026
  • 29 Sato Y, Nishimata T, Mori M. J. Org. Chem. 1994; 59: 6133
  • 30 Stará IG, Starý I, Kollárovič A, Teplý F, Vyskočil S, Saman D. Tetrahedron Lett. 1999; 40: 1993
  • 31 Shibata T, Tsuchikama K. Org. Biomol. Chem. 2008; 6: 1317
  • 32 Tanaka K. Chem. Asian J. 2009; 4: 508
  • 33 Inglesby P, Evans PA. Chem. Soc. Rev. 2010; 39: 2791
  • 34 Shibata T, Uchiyama T, Hirashima H, Endo K. Pure Appl. Chem. 2011; 83: 597
  • 35 Domínguez G, Pérez-Castells J. Chem. Soc. Rev. 2011; 40: 3430
  • 36 Marinetti A, Jullien H, Voituriez A. Chem. Soc. Rev. 2012; 41: 4884
  • 37 Shibata Y, Tanaka K. Synthesis 2012; 44: 323
  • 38 Broere DL. J, Ruijter E. Synthesis 2012; 44: 2639
  • 39 Varela JA, Saá C. Chem. Rev. 2003; 103: 3787
  • 40 Chopade PR, Louie J. Adv. Synth. Catal. 2006; 348: 2307
  • 41 D’Souza DM, Müller TJ. Chem. Soc. Rev. 2007; 36: 1095
  • 42 Heller B, Hapke M. Chem. Soc. Rev. 2007; 36: 1085
  • 43 Perreault S, Rovis T. Chem. Soc. Rev. 2009; 38: 3149
  • 44 Shaaban MR, El-Sayed R, Elwahy AH. M. Tetrahedron 2011; 67: 6095
  • 45 Tanaka K. Heterocycles 2012; 85: 1017
  • 46 Yamamoto Y. Heterocycles 2013; 87: 2459
  • 47 Allais C, Grassot J.-M, Rodriguez J, Constantieux T. Chem. Rev. 2014; 114: 10829
  • 48 Satoh Y, Obora Y. Eur. J. Org. Chem. 2015; 2015: 5041
  • 49 Amatore M, Aubert C. Eur. J. Org. Chem. 2015; 2015: 265
  • 50 Tanaka K, Kimura Y, Murayama K. Bull. Chem. Soc. Jpn. 2015; 88: 375
  • 51 Lledó A, Pla-Quintana A, Roglans A. Chem. Soc. Rev. 2016; 45: 2010
  • 52 Liu Y, Song R, Li J. Sci. China Chem. 2016; 59: 161
  • 53 Domínguez G, Pérez-Castells J. Chem. Eur. J. 2016; 22: 6720
  • 54 Hapke M. Tetrahedron Lett. 2016; 57: 5719
  • 55 Yamamoto Y. Tetrahedron Lett. 2017; 58: 3787
  • 56 Starosotnikov AM, Bastrakov MA. Chem. Heterocycl. Compd. 2017; 53: 1181
  • 57 Babazadeh M, Soleimani-Amiri S, Vessally E, Hosseinian A, Edjlali L. RSC Adv. 2017; 7: 43716
  • 58 Kotha S, Lahiri K, Sreevani G. Synlett 2018; 29: 2342
  • 59 Pla-Quintana A, Roglans A. Asian J. Org. Chem. 2018; 7: 1706
  • 60 Roglans A, Pla-Quintana A, Solà M. Chem. Rev. 2020; 121: 1894
  • 61 Nagata T, Obora Y. Asian J. Org. Chem. 2020; 9: 1532
  • 62 Okamoto S, Yamada T, Tanabe Y, Sakai M. Organometallics 2018; 37: 4431
  • 63 Siemiaszko G, Six Y. New J. Chem. 2018; 42: 20219
  • 64 Brenna D, Villa M, Gieshoff TN, Fischer F, Hapke M, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2017; 56: 8451
  • 65 Neumeier M, Chakraborty U, Schaarschmidt D, de la Peña O’Shea V, Perez-Ruiz R, Jacobi von Wangelin A. Angew. Chem. Int. Ed. 2020; 59: 13473
  • 66 Gawali SS, Gunanathan C. J. Organomet. Chem. 2019; 881: 139
  • 67 Sugahara T, Guo J.-D, Sasamori T, Nagase S, Tokitoh N. Angew. Chem. Int. Ed. 2018; 57: 3499
  • 68 Xue F, Loh YK, Song X, Teo WJ, Chua JY. D, Zhao J, Hor TS. A. Chem. Asian J. 2017; 12: 168
  • 69 Kumon T, Yamada S, Agou T, Kubota T, Konno T. J. Fluorine Chem. 2018; 213: 11
  • 70 García-Lacuna J, Domínguez G, Blanco-Urgoiti J, Pérez-Castells J. Org. Lett. 2018; 20: 5219
  • 71 Ma P, Spencer JT. Inorg. Chim. Acta. 2018; 482: 67
  • 72 Jónsson HF, Evjen S, Fiksdahl A. Org. Lett. 2017; 19: 2202
  • 73 Tamizmani M, Sivasankar C. J. Organomet. Chem. 2017; 845: 82
  • 74 Wang Y.-I, Hsu W.-L, Ho F.-C, Li C.-P, Wang C.-F, Chen H.-H. Tetrahedron 2017; 73: 7210
  • 75 Weber SM, Hilt G. Org. Lett. 2019; 21: 4106
  • 76 Doll JS, Eichelmann R, Hertwig LE, Bender T, Kohler VJ, Bill E, Wadepohl H, Roşca D.-A. ACS Catal. 2021; 11: 5593
  • 77 Zhou F, Huang Z, Huang Z, Cheng R, Yang Y, You J. Org. Lett. 2021; 23: 4559
  • 78 Nishigaki S, Shibata Y, Tanaka K. J. Org. Chem. 2017; 82: 11117
  • 79 Reiner BR, Tonks IA. Inorg. Chem. 2019; 58: 10508
  • 80 Silvestri AP, Oakdale JS. Chem. Commun. 2020; 56: 13417
  • 81 Yang K, Wang P, Sun Z.-Y, Guo M, Zhao W, Tang X, Wang G. Org. Lett. 2021; 23: 3933
  • 82 Hayase N, Miyauchi Y, Aida Y, Sugiyama H, Uekusa H, Shibata Y, Tanaka K. Org. Lett. 2017; 19: 2993
  • 83 Alonso JM, Quiroga S, Codony S, Turcu AL, Barniol-Xicota M, Pérez D, Guitián E, Vázquez S, Peña D. Chem. Commun. 2018; 54: 5996
  • 84 Wei S, Yin L, Wang SR, Tang Y. Org. Lett. 2019; 21: 1458
  • 85 Thorve PR, Guru MM, Maji B. J. Org. Chem. 2019; 84: 8185
  • 86 Ye F, Haddad M, Ratovelomanana-Vidal V, Michelet V. Catal. Commun. 2018; 107: 78
  • 87 Aida Y, Shibata Y, Tanaka K. J. Org. Chem. 2018; 83: 2617
  • 88 Jeulin S, Duprat de Paule S, Ratovelomanana-Vidal V, Genêt J.-P, Champion N, Dellis P. Angew. Chem. Int. Ed. 2004; 43: 320
  • 89 Genêt J.-P, Ayad T, Ratovelomanana-Vidal V. Chem. Rev. 2014; 114: 2824
  • 90 Wood JM, da Silva Júnior EN, Bower JF. Org. Lett. 2020; 22: 265
  • 91 Manick A.-D, Salgues B, Parrain J.-L, Zaborova E, Fages F, Amatore M, Commeiras L. Org. Lett. 2020; 22: 1894
  • 92 Artigas A, Pla-Quintana A, Lledó A, Roglans A, Solà M. Chem. Eur. J. 2018; 24: 10653
  • 93 Aida Y, Shibata Y, Tanaka K. Chem. Asian J. 2019; 14: 1823
  • 94 Maesato T, Shintani R. Chem. Lett. 2020; 49: 344
  • 95 Aida Y, Shibata Y, Tanaka K. Chem. Eur. J. 2020; 26: 3004
  • 96 Riveira MJ, Diez CM, Mischne MP, Mata EG. J. Org. Chem. 2018; 83: 10001
  • 97 Ni J, Chen J, Zhou Y, Wang G, Li S, He Z, Sun W, Fan B. Adv. Synth. Catal. 2019; 361: 3543
  • 98 Teng Q, Mao W, Chen D, Wang Z, Tung C.-H, Xu Z. Angew. Chem. Int. Ed. 2020; 59: 2220
  • 99 Suzuki S, Shibata Y, Tanaka K. Chem. Eur. J. 2020; 26: 3698
  • 100 Agou T, Saruwatari S, Shirai T, Kumon T, Yamada S, Konno T, Mizuhata Y, Tokitoh N, Sei Y, Fukumoto H, Kubota T. J. Fluorine Chem. 2020; 234: 109512
  • 101 Rycek L, Mateus M, Beytlerová N, Kotora M. Org. Lett. 2021; 23: 4511
  • 102 Kotha S, Sreevani G. Synthesis 2018; 50: 4883
  • 103 Kotha S, Sreevani G. Eur. J. Org. Chem. 2018; 2018: 5935
  • 104 Xu F, Si X.-J, Wang X.-N, Kou H.-D, Chen D.-M, Liu C.-S, Du M. RSC Adv. 2018; 8: 4895
  • 105 Méndez-Gálvez C, Böhme M, Leino R, Savela R. Eur. J. Org. Chem. 2020; 2020: 1708
  • 106 Amakasu T, Sato K, Ohta Y, Kitazawa G, Sato H, Oumiya K, Kawakami Y, Takeuchi T, Kabe Y. J. Organomet. Chem. 2020; 905: 121006
  • 107 Aechtner T, Barry DA, David E, Ghellamallah C, Harvey DF, de la Houpliere A, Knopp M, Malaska MJ, Pérez D, Schärer KA, Siesel BA, Vollhardt KP. C, Zitterbart R. Synthesis 2018; 50: 1053
  • 108 Caivano I, Kaiser RP, Schnurrer F, Mosinger J, Císařová I, Nečas D, Kotora M. Catalysts 2019; 9: 942
  • 109 Tan J.-F, Bormann CT, Perrin FG, Chadwick FM, Severin K, Cramer N. J. Am. Chem. Soc. 2019; 141: 10372
  • 110 Liu R, Giordano L, Tenaglia A. Chem. Asian J. 2017; 12: 2245
  • 111 Petko D, Pounder A, Tam W. Synthesis 2019; 51: 4271
  • 112 Miguel-Ávila J, Tomás-Gamasa M, Mascareñas JL. Angew. Chem. Int. Ed. 2020; 59: 17628
  • 113 Miura H, Tanaka Y, Nakahara K, Hachiya Y, Endo K, Shishido T. Angew. Chem. Int. Ed. 2018; 57: 6136
  • 114 Watanabe K, Satoh Y, Kamei M, Furukawa H, Fuji M, Obora Y. Org. Lett. 2017; 19: 5398
  • 115 Sawano T, Toyoshima Y, Takeuchi R. Inorganics 2019; 7: 138
  • 116 Arai S, Izaki A, Amako Y, Nakajima M, Uchiyama M, Nishida A. Adv. Synth. Catal. 2019; 361: 4882
  • 117 Zhao W.-C, Wang X, Feng J, Tian P, He Z.-T. Tetrahedron 2021; 79: 131862
  • 118 Mitake A, Fusamae T, Kanyiva KS, Shibata T. Eur. J. Org. Chem. 2017; 2017: 7266
  • 119 Shibata T, Fusamae T, Takano H, Sugimura N, Kanyiva KS. Asian J. Org. Chem. 2019; 8: 970
  • 120 Kimura Y, Shibata Y, Tanaka K. Chem. Lett. 2018; 47: 806
  • 121 Nishigaki S, Shibata Y, Nakajima A, Okajima H, Masumoto Y, Osawa T, Muranaka A, Sugiyama H, Horikawa A, Uekusa H, Koshino H, Uchiyama M, Sakamoto A, Tanaka K. J. Am. Chem. Soc. 2019; 141: 14955
  • 122 Aida Y, Nogami J, Sugiyama H, Uekusa H, Tanaka K. Chem. Eur. J. 2020; 26: 12579
  • 123 Yasui T, Nakazato Y, Kurisaki K, Yamamoto Y. Adv. Synth. Catal. 2021; in press, DOI: 10.1002/adsc.202100513.
  • 124 Cadart T, Nečas D, Kaiser RP, Favereau L, Cisařova I, Gyepes R, Hodačova J, Kalikova K, Bednarova L, Crassous J, Kotora M. Chem. Eur. J. 2021; 27: 11279
  • 125 Trommer V, Fischer F, Hapke M. Monatsh. Chem. 2018; 149: 755
  • 126 Bhatt D, Patel N, Chowdhury H, Bharatam PV, Goswami A. Adv. Synth. Catal. 2018; 360: 1876
  • 127 Murayama K, Shibata Y, Sugiyama H, Uekusa H, Tanaka K. J. Org. Chem. 2017; 82: 1136
  • 128 Xie Y, Wu C, Jia C, Tung C.-H, Wang W. Org. Chem. Front. 2020; 7: 2196
  • 129 Li K, Wei L, Sun M, Li B, Liu M, Li C. Angew. Chem. Int. Ed. 2021; 60: 20204
  • 130 Kumon T, Yamada S, Agou T, Fukumoto H, Kubota T, Hammond GB, Konno T. Adv. Synth. Catal. 2021; 363: 1912
  • 131 Cho IY, Kim WK, Ji JH, Lee JW, Seo JK, Seo J, Hong SY. J. Org. Chem. 2021; 86: 9328
  • 132 Wang C.-S, Sun Q, García F, Wang C, Yoshikai N. Angew. Chem. Int. Ed. 2021; 60: 9627
  • 133 Ye F, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Chem. Front. 2017; 4: 1063
  • 134 Ye F, Haddad M, Ratovelomanana-Vidal V, Michelet V. Org. Lett. 2017; 19: 1104
  • 135 Ye F, Boukattaya F, Haddad M, Ratovelomanana-Vidal V, Michelet V. New J. Chem. 2018; 42: 3222
  • 136 Ye F, Tran C, Jullien L, Le Saux T, Haddad M, Michelet V, Ratovelomanana-Vidal V. Org. Lett. 2018; 20: 4950
  • 137 Tran C, Haddad M, Ratovelomanana-Vidal V. Synlett 2019; 30: 1891
  • 138 Medas KM, Lesch RW, Edioma FB, Wrenn SP, Ndahayo V, Mulcahy SP. Org. Lett. 2020; 22: 3135
  • 139 Dubovtsev AY, Shcherbakov NV, Dar’in DV, Kukushkin VY. Adv. Synth. Catal. 2020; 362: 2672
  • 140 Tran C, Haddad M, Ratovelomanana-Vidal V. Synthesis 2019; 51: 2532
  • 141 Kalaramna P, Bhatt D, Sharma H, Goswami A. Eur. J. Org. Chem. 2019; 2019: 4694
  • 142 Zhou H, Chaminda Lakmal HH, Baine JM, Valle HU, Xu X, Cui X. Chem. Sci. 2017; 8: 6520
  • 143 Kalaramna P, Bhatt D, Sharma H, Goswami A. Adv. Synth. Catal. 2019; 361: 4379
  • 144 Liu D, Zhou D, Yang H, Li J, Cui C. Chem. Commun. 2019; 55: 12324
  • 145 Bhatt D, Kalaramna P, Kumar K, Goswami A. Eur. J. Org. Chem. 2020; 2020: 4606
  • 146 Peng S, Cao S, Sun J. Org. Lett. 2017; 19: 524
  • 147 Varela I, Faustino H, Díez E, Iglesias-Sigüenza J, Grande-Carmona F, Fernández R, Lassaletta JM, Mascareñas JL, López F. ACS Catal. 2017; 7: 2397
  • 148 Tian T, Wang X, Lv L, Li Z. Eur. J. Org. Chem. 2020; 2020: 4425
  • 149 Hanada K, Nogami J, Miyamoto K, Hayase N, Nagashima Y, Tanaka Y, Muranaka A, Uchiyama M, Tanaka K. Chem. Eur. J. 2021; 27: 9313