Synthesis 2023; 55(01): 62-74
DOI: 10.1055/s-0040-1720046
short review

Transborylation-Enabled Boron Catalysis

Andrew D. Bage
a   EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
,
Kieran Nicholson
a   EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
,
Thomas A. Hunt
b   Medicinal Chemistry, Early Oncology, AstraZeneca, Cambridge CB4 0WG, UK
,
Thomas Langer
c   Pharmaceutical Technology & Development, Chemical Development U.K., AstraZeneca, Macclesfield SK10 2NA, UK
,
a   EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh EH9 3FJ, UK
› Author Affiliations
S.P.T. thanks the Royal Society for a University Research Fellowship (URF/R/191015). S.P.T., A.D.B., and K.N. thank AstraZeneca and the Engineering and Physical Sciences Research Council (EPSRC) for Ph.D. studentships.


Abstract

This review highlights transborylation (controlled boron-boron exchange) and its applications as a turnover strategy in boron-catalysed methodologies. Catalytic applications of B–C, B–O, B–N, B–F, B–S, and B–Se transborylations are discussed in the context of transborylation-enabled catalysis, across a wide range of organic transformations including hydroboration, C–C bond formation, C–H borylation, chemoselective reduction, and asymmetric reduction.

1 Introduction

2 B–C Transborylation

3 B–O Transborylation

4 B–N Transborylation

5 B–F Transborylation

6 B–S Transborylation

7 Conclusion



Publication History

Received: 05 August 2022

Accepted after revision: 26 August 2022

Article published online:
10 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Schlesinger HI, Burg AB. J. Am. Chem. Soc. 1931; 53: 4321
    • 1b Porter RF, Wason SK. J. Phys. Chem. 1965; 69: 2208
    • 1c Coyle TD, Cooper J, Ritter JJ. Inorg. Chem. 1968; 7: 1014
  • 2 McCusker PA, Hennion GF, Ashby EC. J. Am. Chem. Soc. 1957; 79: 5192
  • 3 Hofmeister HK, Van Wazer JR. J. Inorg. Nucl. Chem. 1964; 26: 1209
  • 4 Pasto DJ, Balasubramaniyan V, Wojtkowski PW. Inorg. Chem. 1969; 8: 594
  • 5 Burg AB, Schlesinger HI. J. Am. Chem. Soc. 1933; 55: 4020
    • 6a Schlesinger HI, Walker AO. J. Am. Chem. Soc. 1935; 57: 621
    • 6b Schlesinger HI, Horvitz L, Burg AB. J. Am. Chem. Soc. 1936; 58: 407
  • 7 Contreras R, Wrackmeyer B. Spectrochim. Acta, Part A 1982; 38: 941
    • 8a Hennion GF, McCusker PA, Ashby EC, Rutkowski AJ. J. Am. Chem. Soc. 1957; 79: 5194
    • 8b McCusker PA, Bright JH. J. Org. Chem. 1964; 29: 2093
  • 9 Brown HC, Gupta SK. J. Am. Chem. Soc. 1970; 92: 6983
  • 10 Brown HC, Gupta SK. J. Am. Chem. Soc. 1971; 93: 1816
  • 11 Hoshi M, Shirakawa K, Arase A. Chem. Commun. 1998; 1225
  • 12 Brown HC, Krishnamurthy S. Tetrahedron 1979; 35: 567
  • 13 Thomas SP, Aggarwal VK. Angew. Chem. Int. Ed. 2009; 48: 1896
    • 14a Pelter A. Chem. Soc. Rev. 1982; 11: 191
    • 14b Fyfe JW. B, Watson AJ. B. Chem 2017; 3: 31
    • 15a Dutta S, Bhattacharya T, Werz DB, Maiti D. Chem 2021; 7: 555
    • 15b Carroll A.-M, O’Sullivan TP, Guiry PJ. Adv. Synth. Catal. 2005; 347: 609
    • 15c Chong CC, Kinjo R. ACS Catal. 2015; 5: 3238
    • 15d Bisht R, Haldar C, Hassan MM. M, Hoque ME, Chaturvedi J, Chattopadhyay B. Chem. Soc. Rev. 2022; 51: 5042
  • 16 Blake AJ, Cunningham A, Ford A, Teat SJ, Woodward S. Chem. Eur. J. 2000; 6: 3586
  • 17 Rao B, Chong CC, Kinjo R. J. Am. Chem. Soc. 2018; 140: 652
  • 18 Chong CC, Hirao H, Kinjo R. Angew. Chem. Int. Ed. 2015; 54: 190
  • 19 Adams MR, Tien C.-H, Huchenski BS. N, Ferguson MJ, Speed AW. H. Angew. Chem. Int. Ed. 2017; 56: 6268
  • 20 Chong CC, Rao B, Kinjo R. ACS Catal. 2017; 7: 5814
    • 21a Hadlington TJ, Hermann M, Frenking G, Jones C. J. Am. Chem. Soc. 2014; 136: 3028
    • 21b Hermann M, Jones C, Frenking G. Inorg. Chem. 2014; 53: 6482
  • 22 Hadlington TJ, Kefalidis CE, Maron L, Jones C. ACS Catal. 2017; 7: 1853
  • 23 Yang Z, Zhong M, Ma X, De S, Anusha C, Parameswaran P, Roesky HW. Angew. Chem. Int. Ed. 2015; 54: 10225
  • 24 Yang Z, Zhong M, Ma X, Nijesh K, De S, Parameswaran P, Roesky HW. J. Am. Chem. Soc. 2016; 138: 2548
  • 25 Bismuto A, Thomas SP, Cowley MJ. Angew. Chem. Int. Ed. 2016; 55: 15356
  • 26 Franz D, Sirtl L, Pöthig A, Inoue S. Z. Anorg. Allg. Chem. 2016; 642: 1245
    • 27a Bismuto A, Cowley MJ, Thomas SP. ACS Catal. 2018; 8: 2001
    • 27b Li F, Bai X, Cai Y, Li H, Zhang S.-Q, Liu F.-H, Hong X, Xu Y, Shi S.-L. Org. Process Res. Dev. 2019; 23: 1703
  • 28 Courtemanche M.-A, Larouche J, Légaré M.-A, Bi W, Maron L, Fontaine F.-G. Organometallics 2013; 32: 6804
  • 29 Harinath A, Bhattacharjee J, Panda TK. Adv. Synth. Catal. 2019; 361: 850
  • 30 Das S, Karmakar H, Bhattacharjee J, Panda TK. Dalton Trans. 2019; 48: 11978
  • 31 Willcox DR, De Rosa DM, Howley J, Levy A, Steven A, Nichol GS, Morrison CA, Cowley MJ, Thomas SP. Angew. Chem. Int. Ed. 2021; 60: 20672
    • 32a Wu TR, Chong JM. J. Am. Chem. Soc. 2005; 127: 3244
    • 32b Wu TR, Chong JM. J. Am. Chem. Soc. 2007; 129: 4908
    • 32c Turner HM, Patel J, Niljianskul N, Chong JM. Org. Lett. 2011; 13: 5796
  • 33 Jayaraman A, Misal Castro LC, Desrosiers V, Fontaine F.-G. Chem. Sci. 2018; 9: 5057
    • 34a Hoffmann RW, Zeiss HJ. J. Org. Chem. 1981; 46: 1309
    • 34b Chen AC, Ren L, Crudden CM. Chem. Commun. 1999; 611
  • 35 Grimblat N, Sugiura M, Pellegrinet SC. J. Org. Chem. 2014; 79: 6754
  • 36 Lou S, Moquist PN, Schaus SE. J. Am. Chem. Soc. 2007; 129: 15398
    • 37a Suseela Y, Prasad AS. B, Periasamy M. J. Chem. Soc., Chem. Commun. 1990; 446
    • 37b Suseela Y, Periasamy M. J. Organomet. Chem. 1993; 450: 47
  • 38 Arase A, Hoshi M, Mijin A, Nishi K. Synth. Commun. 1995; 25: 1957
  • 39 Shirakawa K, Arase A, Hoshi M. Synthesis 2004; 1814
  • 40 Brown HC, Tsukamoto A, Bigley DB. J. Am. Chem. Soc. 1960; 82: 4703
  • 41 Hoshi M, Shirakawa K, Okimoto M. Tetrahedron Lett. 2007; 48: 8475
  • 42 Fleige M, Mobus J, vom Stein T, Glorius F, Stephan DW. Chem. Commun. 2016; 52: 10830
  • 43 Vasko P, Zulkifly IA, Fuentes M. Á, Mo Z, Hicks J, Kamer PC. J, Aldridge S. Chem. Eur. J. 2018; 24: 10531
  • 44 Nieto-Sepulveda E, Bage AD, Evans LA, Hunt TA, Leach AG, Thomas SP, Lloyd-Jones GC. J. Am. Chem. Soc. 2019; 141: 18600
  • 45 Yin Q, Kemper S, Klare HF. T, Oestreich M. Chem. Eur. J. 2016; 22: 13840
    • 46a Lawson JR, Wilkins LC, Melen RL. Chem. Eur. J. 2017; 23: 10997
    • 46b Carden JL, Gierlichs LJ, Wass DF, Browne DL, Melen RL. Chem. Commun. 2019; 55: 318
  • 47 Yin Q, Soltani Y, Melen RL, Oestreich M. Organometallics 2017; 36: 2381
  • 48 Ang NW. J, Buettner CS, Docherty S, Bismuto A, Carney JR, Docherty JH, Cowley MJ, Thomas SP. Synthesis 2018; 50: 803
    • 49a Burgess K, Van der Donk WA, Westcott SA, Marder TB, Baker RT, Calabrese JC. J. Am. Chem. Soc. 1992; 114: 9350
    • 49b Westcott SA, Blom HP, Marder TB, Baker RT, Calabrese JC. Inorg. Chem. 1993; 32: 2175
  • 50 Bage AD, Hunt TA, Thomas SP. Org. Lett. 2020; 22: 4107
  • 51 Bage AD, Nicholson K, Hunt TA, Langer T, Thomas SP. ACS Catal. 2020; 10: 13479
  • 52 Docherty JH, Nicholson K, Dominey AP, Thomas SP. ACS Catal. 2020; 10: 4686
  • 53 Uzelac M, Yuan K, Ingleson MJ. Organometallics 2020; 39: 1332
  • 54 Légaré M.-A, Courtemanche M.-A, Rochette É, Fontaine F.-G. Science 2015; 349: 513
  • 55 Légaré Lavergne J, Jayaraman A, Misal Castro LC, Rochette É, Fontaine F.-G. J. Am. Chem. Soc. 2017; 139: 14714
  • 56 Légaré M.-A, Rochette É, Légaré Lavergne J, Bouchard N, Fontaine F.-G. Chem. Commun. 2016; 52: 5387
  • 57 Jayaraman A, Misal Castro LC, Fontaine F.-G. Org. Process Res. Dev. 2018; 22: 1489
  • 58 Bouchard N, Fontaine F.-G. Dalton Trans. 2019; 48: 4846
  • 59 Zou Y, Zhang B, Wang L, Zhang H. Org. Lett. 2021; 23: 2821
  • 60 Dominguez-Molano P, Bru G, Salvado O, Maza RJ, Carbó JJ, Fernández E. Chem. Commun. 2021; 57: 13361
  • 61 Salvado O, Dominguez-Molano P, Fernández E. Org. Lett. 2022; 24: 4949
  • 62 Midland MM, McLoughlin JI. J. Org. Chem. 1984; 49: 4101
  • 63 Nicholson K, Dunne J, DaBell P, Garcia AB, Bage AD, Docherty JH, Hunt TA, Langer T, Thomas SP. ACS Catal. 2021; 11: 2034
  • 64 Brown HC, Knights EF, Scouten CG. J. Am. Chem. Soc. 1974; 96: 7765
  • 65 Nicholson K, Langer T, Thomas SP. Org. Lett. 2021; 23: 2498
  • 66 Légaré Lavergne J, To H.-M, Fontaine F.-G. RSC Adv. 2021; 11: 31941
  • 67 Brown HC, Heim P, Yoon NM. J. Am. Chem. Soc. 1970; 92: 1637
  • 68 Moreno González A, Nicholson K, Llopis N, Nichol GS, Langer T, Baeza A, Thomas SP. Angew. Chem. Int. Ed. 2022; 61: e202209584
  • 69 Willcox DR, Nichol GS, Thomas SP. ACS Catal. 2021; 11: 3190
  • 70 Nicholson K, Peng Y, Llopis N, Willcox DR, Nichol GS, Langer T, Baeza A, Thomas SP. ACS Catal. 2022; 12: 10887
  • 71 Gonzalez AZ, Román JG, Gonzalez E, Martinez J, Medina JR, Matos K, Soderquist JA. J. Am. Chem. Soc. 2008; 130: 9218
    • 72a Brown HC, Kanth JV. B, Zaidlewicz M. J. Org. Chem. 1998; 63: 5154
    • 72b Kamal MM, Liu Z, Zhai S, Vidović D. Molecules 2021; 26: 5443
  • 73 Monti SA, Schmidt RR. Tetrahedron 1971; 27: 3331
    • 74a Kiyokawa K, Nagata T, Minakata S. Angew. Chem. Int. Ed. 2016; 55: 10458
    • 74b Nagata T, Tamaki A, Kiyokawa K, Tsutsumi R, Yamanaka M, Minakata S. Chem. Eur. J. 2018; 24: 17027
  • 75 Jeong E, Heo J, Park S, Chang S. Chem. Eur. J. 2019; 25: 6320
  • 76 Jayaraman A, Powell-Davies H, Fontaine F.-G. Tetrahedron 2019; 75: 2118
  • 77 Benn K, Nicholson K, Langer T, Thomas SP. Chem. Commun. 2021; 57: 9406
  • 78 Meger F, Kwok AC. W, Gilch F, Wilcox DR, Hendy AJ, Nicholson K, Bage AD, Langer T, Hunt TA, Thomas SP. Beilstein J. Org. Chem. 2022; 18: 1332
  • 79 Pradhan S, Sankar RV, Gunanathan C. J. Org. Chem. 2022; 87: 12386
    • 80a Guo J, Bamford KL, Stephan DW. Org. Biomol. Chem. 2019; 17: 5258
    • 80b Bamford KL, Chitnis SS, Qu Z.-w, Stephan DW. Chem. Eur. J. 2018; 24: 16014
  • 81 Rochette É, Boutin H, Fontaine F.-G. Organometallics 2017; 36: 2870
  • 82 Romero EA, Peltier JL, Jazzar R, Bertrand G. Chem. Commun. 2016; 52: 10563