Synlett 2022; 33(08): 705-712
DOI: 10.1055/s-0041-1737325
synpacts

How Rhodium(I)-Catalyzed Phosphorus(III)-Directed C–H Bond Functionalizations Can Improve the Catalytic Activities of Phosphines

Zhuan Zhang
b   Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. of China
,
Natacha Durand
a   Univ Rennes, CNRS, UMR6226, F-3500 Rennes, France
,
a   Univ Rennes, CNRS, UMR6226, F-3500 Rennes, France
› Author Affiliations
We thank the CNRS, UR1, Agence Nationale de la Recherche (Grant No. ANR-20-CE07-0019-01) for providing financial support, and Z.Z. thanks the China Scholarship Council (CSC) for his Ph.D. grant (Grant No. 201706780007).


Abstract

Trivalent-phosphorus-containing molecules are widely used in fields ranging from catalysis to materials science. Efficient catalytic methods for their modifications, providing straightforward access to novel hybrid structures with superior catalytic activities, are highly desired to facilitate reaction improvement or discovery. We have recently developed new methods for synthesizing polyfunctional phosphines by C–C cross-couplings through rhodium-catalyzed C–H bond activation. These methods use a native P(III) atom as a directing group, and can be used in regioselective late-stage functionalization of phosphine ligands. Interestingly, some of the modified phosphines outperform their parents in Pd-catalyzed cross-coupling reactions.

1 Introduction

2 Early Examples of Transition-Metal-Catalyzed P(III)-Directed C–H Bond Activation/Functionalizations

3 Synthesis of Polyfunctional Biarylphosphines by Late-Stage Alkylation: Application in Carboxylation Reactions

4 Synthesis of Polyfunctional Biarylphosphines by Late-Stage Alkenylation: Application in Amidation Reactions

5 Conclusion



Publication History

Received: 14 October 2021

Accepted after revision: 30 November 2021

Article published online:
10 January 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Berrisford DJ, Bolm C, Sharpless KB. Angew. Chem. Int. Ed. 1995; 34: 1059
    • 1b Crabtree RH. The Organometallic Chemistry of the Transition Metals, 5th ed. Wiley; Hoboken: 2009
    • 1c Lindner R, van den Bosch B, Lutz M, Reek JN. H, van der Vlugt JI. Organometallics 2011; 30: 499
    • 1d Surry DS, Buchwald SL. Chem. Sci. 2011; 2: 27
    • 1e Crabtree RH. New J. Chem. 2011; 35: 18
    • 1f Carroll MP, Guiry PJ. Chem. Soc. Rev. 2014; 43: 819
    • 1g Clevenger AL, Stolley RM, Aderibigbe J, Louie J. Chem. Rev. 2020; 120: 6124
    • 1h Collado A, Nelson DJ, Nolan SP. Chem. Rev. 2021; 121: 8559
    • 2a Phosphorus(III) Ligands in Homogeneous Catalysis: Design and Synthesis . Kamer PC. J, van Leeuwen PW. N. M. Wiley; Chichester: 2012
    • 2b Allen DW. In Organophosphorus Chemistry, Vol. 43. Allen DW, Tebby JC, Loakes D. Royal Society of Chemistry; Cambridge: 2014
    • 2c van Leeuwen PW. N. M. In Organophosphorus Chemistry: From Molecules to Applications, Chap. 1 . Iaroshenko V. Wiley-VCH; Weinheim: 2019
    • 4a Unoh Y, Hashimoto Y, Takeda D, Hirano K, Satoh T, Miura M. Org. Lett. 2013; 15: 3258
    • 4b Gwon D, Lee D, Kim J, Park S, Chang S. Chem. Eur. J. 2014; 20: 12421
    • 4c Unoh Y, Satoh T, Hirano K, Miura M. ACS Catal. 2015; 5: 6634
    • 4d Jang Y.-S, Dieckmann M, Cramer N. Angew. Chem. Int. Ed. 2017; 56: 15088
    • 4e Wang C.-S, Dixneuf PH, Soulé J.-F. ChemCatChem 2017; 9: 3117
    • 4f Zhang Z, Dixneuf PH, Soulé J.-F. Chem. Commun. 2018; 54: 7265
    • 5a Bedford RB, Coles SJ, Hursthouse MB, Limmert ME. Angew. Chem. Int. Ed. 2003; 42: 112
    • 5b Bedford RB, Betham M, Caffyn AJ. M, Charmant JP. H, Lewis-Alleyne LC, Long PD, Polo-Cerón D, Prashar S. Chem. Commun. 2008; 990
    • 5c Yang J.-F, Wang R.-H, Wang Y.-X, Yao W.-W, Liu Q.-S, Ye M. Angew. Chem. Int. Ed. 2016; 55: 14116
    • 5d Homma Y, Fukuda K, Iwasawa N, Takaya J. Chem. Commun. 2020; 56: 10710
  • 6 Oi S, Watanabe S.-i, Fukita S, Inoue Y. Tetrahedron Lett. 2003; 44: 8665
    • 7a Borah AJ, Shi Z. J. Am. Chem. Soc. 2018; 140: 6062
    • 7b Qiu X, Deng H, Zhao Y, Shi Z. Sci. Adv. 2018; 4: eaau6468
    • 7c Qiu X, Wang P, Wang D, Wang M, Yuan Y, Shi Z. Angew. Chem. Int. Ed. 2019; 58: 1504
  • 8 Crabtree RH. Chem. Rev. 2015; 115: 127
  • 9 Shelby Q, Kataoka N, Mann G, Hartwig J. J. Am. Chem. Soc. 2000; 122: 10718
    • 10a Crawford KM, Ramseyer TR, Daley CJ, Clark TB. Angew. Chem. Int. Ed. Engl. 2014; 53: 7589
    • 10b Wright SE, Richardson-Solorzano S, Stewart TN, Miller CD, Morris KC, Daley CJ. A, Clark TB. Angew. Chem. Int. Ed. 2019; 58: 2834
  • 11 Qiu X, Wang M, Zhao Y, Shi Z. Angew. Chem. Int. Ed. 2017; 56: 7233
  • 12 Tortajada A, Juliá-Hernández F, Börjesson M, Moragas T, Martin R. Angew. Chem. Int. Ed. 2018; 57: 15948
  • 13 Correa A, Martín R. J. Am. Chem. Soc. 2009; 131: 15974
  • 14 Shimomaki K, Murata K, Martin R, Iwasawa N. J. Am. Chem. Soc. 2017; 139: 9467
  • 15 Zhang Z, Roisnel T, Dixneuf PH, Soulé J.-F. Angew. Chem. Int. Ed. 2019; 58: 14110
    • 16a Dong K, Sang R, Wei Z, Liu J, Dühren R, Spannenberg A, Jiao H, Neumann H, Jackstell R, Franke R, Beller M. Chem. Sci. 2018; 9: 2510
    • 16b Sang R, Kucmierczyk P, Dong K, Franke R, Neumann H, Jackstell R, Beller M. J. Am. Chem. Soc. 2018; 140: 5217
    • 16c Dong K, Sang R, Liu J, Razzaq R, Franke R, Jackstell R, Beller M. Angew. Chem. Int. Ed. 2017; 56: 6203
    • 17a Drent E, Arnoldy P, Budzelaar PH. M. J. Organomet. Chem. 1993; 455: 247
    • 17b Crawford L, Cole-Hamilton DJ, Drent E, Bühl M. Chem. Eur. J. 2014; 20: 13923
    • 17c Crawford L, Cole-Hamilton DJ, Bühl M. Organometallics 2015; 34: 438
    • 18a Rataboul F, Zapf A, Jackstell R, Harkal S, Riermeier T, Monsees A, Dingerdissen U, Beller M. Chem. Eur. J. 2004; 10: 2983
    • 18b Zapf A, Jackstell R, Rataboul F, Riermeier T, Monsees A, Fuhrmann C, Shaikh N, Dingerdissen U, Beller M. Chem. Commun. 2004; 38
    • 18c Li H, Dong K, Jiao H, Neumann H, Jackstell R, Beller M. Nat. Chem. 2016; 8: 1159
  • 19 So CM, Zhou Z, Lau CP, Kwong FY. Angew. Chem. Int. Ed. 2008; 47: 6402
  • 20 Martin R, Buchwald SL. Acc. Chem. Res. 2008; 41: 1461
  • 21 Shaughnessy KH. Chem. Rev. 2009; 109: 643
  • 22 Wang D, Dong B, Wang Y, Qian J, Zhu J, Zhao Y, Shi Z. Nat. Commun. 2019; 10: 3539
    • 23a Li J.-W, Wang L.-N, Li M, Tang P.-T, Zhang N.-J, Li T, Luo X.-P, Kurmoo M, Liu Y.-J, Zeng M.-H. Org. Lett. 2020; 22: 1331
    • 23b Li M, Tao J.-Y, Wang L.-N, Li J.-W, Liu Y.-J, Zeng M.-H. J. Org. Chem. 2021; 86: 11915
  • 24 Ruiz-Castillo P, Buchwald SL. Chem. Rev. 2016; 116: 12564
  • 25 Ikawa T, Barder TE, Biscoe MR, Buchwald SL. J. Am. Chem. Soc. 2007; 129: 13001
  • 26 Zhang Z, Cordier M, Dixneuf PH, Soulé J.-F. Org. Lett. 2020; 22: 5936
  • 27 Mahmudov KT, Gurbanov AV, Guseinov FI, Guedes da Silva MF. C. Coord. Chem. Rev. 2019; 387: 32