Synlett 2022; 33(15): 1481-1485
DOI: 10.1055/s-0041-1737456
synpacts

Advancing the Logic of Polymer Synthesis via Skeletal Rearrangements

,
Maxim Ratushnyy
,
This work was funded by the generous startup funds provided by the University of North Carolina at Chapel Hill. A.V.Z. is also supported by the 3M Non-Tenured Faculty Award. This material is based on work supported by the National Science Foundation (Grant No. DGE-1650116, Graduate Research Fellowship for R.A.J.D.).


Dedicated to the late Robert H. Grubbs

Abstract

Polymers are ubiquitous materials that have driven technological innovation since the middle of the 20th century. As such, the logic that guides polymer synthesis merit considerable attention. Thus far, this logic has often been ‘forward-synthetic’, which constrains the accessible structures of polymer materials. In this article, we emphasize the benefits of ‘retrosynthetic’ logic and posit that the development of skeletal rearrangements of polymer backbones is central to the realization of this logic. To illustrate this point, we discuss two recent examples from our laboratory – Brook and Ireland–Claisen rearrangements of polymer backbones – and contextualize them in prior reports of sigmatropic rearrangements and skeletal rearrangements of polymers. We envision that further development of skeletal rearrangements of polymers will enable advances in not only the chemistry of such rearrangements and the logic of polymer synthesis, but also polymer re- and upcycling.



Publication History

Received: 22 March 2022

Accepted after revision: 05 April 2022

Article published online:
29 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Staudinger H. Ber. Dtsch. Chem. Ges. 1920; 53: 1073
  • 2 Odian G. Principles of Polymerization . John Wiley & Sons; Hoboken: 2004
  • 3 Maimone TJ, Baran PS. Nat. Chem. Biol. 2007; 3: 396
  • 4 Ishihara Y, Baran PS. Synlett 2010; 1733
  • 5 Brill ZG, Condakes ML, Ting CP, Maimone TJ. Chem. Rev. 2017; 117: 11753
  • 6 Kolb HC, Finn MG, Sharpless KB. Angew. Chem. Int. Ed. 2001; 40: 2004
    • 7a Lodge TP, Hiemenz PC. Polymer Chemistry 2020; 559-562
    • 7b Lodge TP, Hiemenz PC. Polymer Chemistry 2020; 590-595
  • 8 Corey EJ. Angew. Chem. Int. Ed. 1991; 30: 455
  • 9 Chen L, Kern J, Lightstone JP, Ramprasad R. Appl. Phys. Rev. 2021; 8: 031405
  • 10 Ditzler RA. J, Zhukhovitskiy AV. J. Am. Chem. Soc. 2021; 143: 20326
  • 11 Ratushnyy M, Zhukhovitskiy AV. J. Am. Chem. Soc. 2021; 143: 17931
  • 12 Porter MR. J. Polym. Sci. 1958; 33: 447
  • 13 Michel RH, Murphey WA. J. Polym. Sci. 1961; 55: 741
  • 14 Iwakura Y, Uno K, Takiguchi T. J. Polym. Sci., Part A-1: Polym. Chem. 1968; 6: 3345
  • 15 Niume K, Toda F, Uno K, Hasegawa M, Iwakura Y. J. Polym. Sci., Polym. Chem. Ed. 1982; 20: 1965
  • 16 Swager TM, Dougherty DA, Grubbs RH. J. Am. Chem. Soc. 1988; 110: 2973
  • 17 Swager TM, Grubbs RH. J. Am. Chem. Soc. 1989; 111: 4413
  • 18 Swager TM, Grubbs RH. Synth. Met. 1989; 28: D57
  • 19 Kosaka N, Hiyama T, Nozaki K. Macromolecules 2004; 37: 4484
  • 20 Galan NJ, Brantley JN. ACS Macro Lett. 2020; 9: 1662
  • 21 Hickenboth CR, Moore JS, White SR, Sottos NR, Baudry J, Wilson SR. Nature 2007; 446: 423
  • 22 Potisek SL, Davis DA, Sottos NR, White SR, Moore JS. J. Am. Chem. Soc. 2007; 129: 13808
  • 23 De Bo G. Macromolecules 2020; 53: 7615
  • 24 Fleming I. Pericyclic Reactions 2011
  • 25 Pindur U, Schneider GH. Chem. Soc. Rev. 1994; 23: 409
  • 26 Lee A, Stewart JD, Clardy J, Ganem B. Chem. Biol. 1995; 2: 195
  • 27 Shipman LW, Li D, Roessner CA, Scott AI, Sacchettini JC. Structure 2001; 9: 587
  • 28 Rearrangements . In Organic Chemistry of Enzyme-Catalyzed Reactions, 2nd ed. Silverman RB. Academic Press; San Diego: 2002: 505-561
  • 29 DeClue MS, Baldridge KK, Künzler DE, Kast P, Hilvert D. J. Am. Chem. Soc. 2005; 127: 15002
  • 30 Li S, Lowell AN, Yu F, Raveh A, Newmister SA, Bair N, Schaub JM, Williams RM, Sherman DH. J. Am. Chem. Soc. 2015; 137: 15366
  • 31 Newmister SA, Li S, Garcia-Borràs M, Sanders JN, Yang S, Lowell AN, Yu F, Smith JL, Williams RM, Houk KN, Sherman DH. Nat. Chem. Biol. 2018; 14: 345
  • 32 Ilardi EA, Stivala CE, Zakarian A. Chem. Soc. Rev. 2009; 38: 3133
  • 33 Jones AC, May JA, Sarpong R, Stoltz BM. Angew. Chem. Int. Ed. 2014; 53: 2556
  • 34 Rojas CM. Molecular Rearrangements in Organic Synthesis . John Wiley & Sons; Hoboken: 2015
  • 35 Tantillo DJ, Hoffmann R. J. Am. Chem. Soc. 2002; 124: 6836
  • 36 Tantillo DJ, Hoffmann R. Angew. Chem. Int. Ed. 2002; 41: 1033
  • 37 Tantillo DJ, Hoffmann R. Helv. Chim. Acta 2003; 86: 3525
  • 38 Tantillo D.J, Hoffmann R. Eur. J. Org. Chem. 2004; 273
  • 39 Tantillo DJ, Hoffmann R, Houk KN, Warner PM, Brown EC, Henze DK. J. Am. Chem. Soc. 2004; 126: 4256
  • 40 Tantillo DJ, Hoffmann R. Acc. Chem. Res. 2006; 39: 477
  • 41 Sydlik SA, Swager TM. Adv. Funct. Mater. 2013; 23: 1873
  • 42 Tena A, Rangou S, Shishatskiy S, Filiz V, Abetz V. Sci. Adv. 2016; 2: e1501859
  • 43 Wang W, Qi X, Guan Y, Zhang F, Zhang J, Yan C, Zhu Y, Wan X. J. Polym. Sci., Part A: Polym. Chem. 2016; 54: 2050
  • 44 de la Viuda MR, Tena A, Neumann S, Willruth S, Filiz V, Abetz V. Polym. Chem. 2018; 9: 4007
  • 45 Meis D, Tena A, Neumann S, Georgopanos P, Emmler T, Shishatskiy S, Rangou S, Filiz V, Abetz V. Polym. Chem. 2018; 9: 3987
  • 46 Hwang S.-H, Choi T.-L. Chem. Sci. 2021; 12: 2404
  • 47 Brook AG. Acc. Chem. Res. 1974; 7: 77
  • 48 Ireland RE, Mueller RH, Willard AK. J. Am. Chem. Soc. 1976; 98: 2868
  • 49 McFarland CM, McIntosh MC. The Ireland–Claisen Rearrangement (1972–2004) . In The Claisen Rearrangement . Hiersemann M, Nubbemeyer U. Wiley-VCH; Weinheim: 2007: 117-210
  • 50 Marvel CS, Potts R, Economy J, Scott GP, Taft WK, Labbe BG. Ind. Eng. Chem. 1955; 47: 2221
  • 51 Furukawa J, Iseda Y, Kobayashi E. Polym. J. 1971; 2: 337
  • 52 Bamford CH, Han X.-z. J. Chem. Soc., Faraday Trans. 1 1982; 78: 855
  • 53 Garvey BS, Juve AE, Sauser DE. Ind. Eng. Chem. 1941; 33: 602
  • 54 https://www.lubrizol.com/coatings/brands/hycar-acrylic-resins (accessed April 20, 2022)