Synthesis 2023; 55(15): 2261-2272
DOI: 10.1055/s-0042-1751362
short review
Special Issue dedicated to Prof. David A. Evans

Uncatalyzed Carbometallation Involving Group 13 Elements: Carboboration and Carboalumination of Alkenes and Alkynes

Yudong Liu
,
K. A. Woerpel
We are grateful for funding from the National Institute of General Medical Sciences (R01GM129286 and R01GM118730).


This review is dedicated to the memory of Professor David A. Evans, a brilliant scientist, committed teacher, and supportive mentor.

Abstract

Carbometallations of alkenes and alkynes are powerful carbon–carbon bond-forming reactions. The use of compounds containing bonds between carbon and group 13 elements, particularly boron and aluminum, are particularly attractive because of the versatility of subsequent transformations. Uncatalyzed carboboration and carboalumination represent less common classes of reactions. This Short Review discusses uncatalyzed carboboration and carboalumination reactions of alkenes and alkynes, including the reaction design and mechanisms.

1 Introduction

2 Uncatalyzed Carboboration of Alkenes

3 Uncatalyzed Carboboration of Alkynes

4 Uncatalyzed Carboalumination of Alkenes

5 Uncatalyzed Carboalumination of Alkynes

6 Conclusion



Publication History

Received: 05 July 2022

Accepted after revision: 01 August 2022

Article published online:
12 October 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Normant JF, Alexakis A. Synthesis 1981; 841
  • 2 Marek I, Basheer A. In Science of Synthesis, Stereoselective Synthesis 1, 1st ed., Vol. 1. de Vries JG, Evans PA, Molander GA. Georg Thieme Verlag; Stuttgart: 2011: 325
  • 3 Ding A, Guo H. In Comprehensive Organic Synthesis II, 2nd ed., Vol. 4. Knochel P. Elsevier; Amsterdam: 2014: 891
  • 4 Marek I. J. Chem. Soc., Perkin Trans. 1 1999; 535
  • 5 Banon-Tenne D, Marek I. In Transition Metals for Organic Synthesis, 2nd ed. Beller M, Bolm C. Wiley-VCH; New York: 2004: 563
  • 6 Hogan A.-ML, O’Shea DF. Chem. Commun. 2008; 3839
  • 7 Fallis AG, Forgione P. Tetrahedron 2001; 57: 5899
  • 8 Flynn AB, Ogilvie WW. Chem. Rev. 2007; 107: 4698
  • 9 Knochel P. In Comprehensive Organic Synthesis, Vol. 4. Trost BM, Fleming I. Pergamon; Oxford: 1991: 865
  • 10 Negishi E, Tan Z. In Metallocenes in Regio- and Stereoselective Synthesis, Vol. 8. Takahashi T. Springer; Berlin/Heidelberg: 2004: 139
  • 11 Liu Z, Gao Y, Zeng T, Engle KM. Isr. J. Chem. 2020; 60: 219
  • 12 Jung H.-J, Cho Y, Kim D, Mehrkhodavandi P. Catal. Sci. Technol. 2021; 11: 62
  • 13 Augé J, Lubin-Germain N, Uziel J. Synthesis 2007; 1739
  • 14 Nishimoto Y, Yasuda M. Chem. Asian J. 2020; 15: 636
  • 15 Greene MA, Liu Y, Sanzone JR, Woerpel KA. Org. Lett. 2020; 22: 7518
  • 16 Sanzone JR, Hu CT, Woerpel KA. J. Am. Chem. Soc. 2017; 139: 8404
  • 17 Wardell JL, Paterson ES. In The Metal–Carbon Bond (1985) . Hartley FR, Patai S. Wiley-VCH; New York: 1985: 219
  • 18 Zietz JR, Robinson GC, Lindsay KL. In Comprehensive Organometallic Chemistry . Wilkinson G, Stone FG. A, Abel EW. Pergamon; Oxford: 1982: 365
  • 19 Männig D, Nöth H. Angew. Chem. Int. Ed. 1985; 24: 878
  • 20 Evans DA, Fu GC, Hoveyda AH. J. Am. Chem. Soc. 1988; 110: 6917
  • 21 Evans DA, Fu GC. J. Am. Chem. Soc. 1991; 113: 4042
  • 22 Köster R. Angew. Chem. Int. Ed. 1964; 3: 174
  • 23 Köster R. Justus Liebigs Ann. Chem. 1958; 618: 31
  • 24 Bubnov YN, Nesmeyanova OA, Rudashevskaya TY, Mikhailov BM, Kazansky BA. Tetrahedron Lett. 1971; 12: 2153
  • 25 Mikhailov BM, Bubnov YN, Nesmeyanova OA, Kiselev VG, Rudashevskaya TY, Kazansky BA. Tetrahedron Lett. 1972; 13: 4627
  • 26 Singleton DA, Waller SC, Zhang Z, Frantz DE, Leung S.-W. J. Am. Chem. Soc. 1996; 118: 9986
  • 27 Frantz DE, Singleton DA. Org. Lett. 1999; 1: 485
  • 28 Dubac J, Laporterie A. Chem. Rev. 1987; 87: 319
  • 29 Angelaud R, Landais Y. J. Org. Chem. 1996; 61: 5202
  • 30 Roberson CW, Woerpel KA. Org. Lett. 2000; 2: 621
  • 31 Roberson CW, Woerpel KA. J. Am. Chem. Soc. 2002; 124: 11342
  • 32 Kuznetsov NY, Starikova ZA, Averkiev BB, Bubnov YN. Russ. Chem. Bull. 2005; 54: 678
  • 33 Joy F, Lappert MF, Prokai B. J. Organomet. Chem. 1966; 5: 506
  • 34 Schmerling L, Luvisi JP, Welch RW. J. Am. Chem. Soc. 1956; 78: 2819
  • 35 Youngblood GT, Trivette CD, Wilder P. J. Org. Chem. 1958; 23: 684
  • 36 Winstein S. J. Am. Chem. Soc. 1961; 83: 1516
  • 37 Walkowiak J, Marciniak B, Koroniak H. J. Fluorine Chem. 2012; 143: 287
  • 38 Miyamoto N, Isiyama S, Utimoto K, Nozaki H. Tetrahedron Lett. 1971; 12: 4597
  • 39 Miyamoto N, Isiyama S, Utimoto K, Nozaki H. Tetrahedron 1973; 29: 2365
  • 40 Jin S, Nguyen VT, Dang HT, Nguyen DP, Arman HD, Larionov OV. J. Am. Chem. Soc. 2017; 139: 11365
  • 41 Roytman VA, Jin S, Nguyen VT, Nguyen VD, Haug GC, Larionov OV, Singleton DA. J. Am. Chem. Soc. 2020; 142: 85
  • 42 Brown HC, Midland MM. Angew. Chem. Int. Ed. 1972; 11: 692
  • 43 You C, Studer A. Angew. Chem. Int. Ed. 2020; 59: 17245
  • 44 Liu X, Deaton TM, Haeffner F, Morken JP. Angew. Chem. Int. Ed. 2017; 56: 11485
  • 45 Cheng Y, Mück-Lichtenfeld C, Studer A. J. Am. Chem. Soc. 2018; 140: 6221
  • 46 Ren S.-C, Zhang F.-L, Qi J, Huang Y.-S, Xu A.-Q, Yan H.-Y, Wang Y.-F. J. Am. Chem. Soc. 2017; 139: 6050
  • 47 Melen RL, Wilkins LC, Kariuki BM, Wadepohl H, Gade LH, Hashmi AS. K, Stephan DW, Hansmann MM. Organometallics 2015; 34: 4127
  • 48 Averdunk A, Hasenbeck M, Müller T, Becker J, Gellrich U. Chem. Eur. J. 2022; 28: e202200470
  • 49 Mikhailov BM, Bubnov YN, Frolov SI. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1967; 16: 2193
  • 50 Frolov SI, Bufonov YN, Mikhailov BM. Bull. Acad. Sci. USSR, Div. Chem. Sci. (Engl. Transl.) 1969; 18: 1846
  • 51 Bubnov YN, Gurskii ME, Grandberg AI, Pershin DG. Tetrahedron 1986; 42: 1079
  • 52 Hasenbeck M, Müller T, Averdunk A, Becker J, Gellrich U. Chem. Eur. J. 2022; 28: e202104254
  • 53 Wrackmeyer B. Coord. Chem. Rev. 1995; 145: 125
  • 54 Wrackmeyer B. Heteroat. Chem. 2006; 17: 188
  • 55 Kehr G, Erker G. Chem. Sci. 2016; 7: 56
  • 56 Kehr G, Erker G. Chem. Commun. 2012; 48: 1839
  • 57 Chen C, Kehr G, Fröhlich R, Erker G. J. Am. Chem. Soc. 2010; 132: 13594
  • 58 Piers WE, Bourke SC, Conroy KD. Angew. Chem. Int. Ed. 2005; 44: 5016
  • 59 Lawson JR, Fasano V, Cid J, Vitorica-Yrezabal I, Ingleson MJ. Dalton Trans. 2016; 45: 6060
  • 60 Cade IA, Ingleson MJ. Chem. Eur. J. 2014; 20: 12874
  • 61 Devillard M, Brousses R, Miqueu K, Bouhadir G, Bourissou D. Angew. Chem. Int. Ed. 2015; 54: 5722
  • 62 Tanaka N, Shoji Y, Hashizume D, Sugimoto M, Fukushima T. Angew. Chem. Int. Ed. 2017; 56: 5312
  • 63 You C, Sakai M, Daniliuc CG, Bergander K, Yamaguchi S, Studer A. Angew. Chem. Int. Ed. 2021; 60: 21697
  • 64 Shoji Y, Tanaka N, Muranaka S, Shigeno N, Sugiyama H, Takenouchi K, Hajjaj F, Fukushima T. Nat. Commun. 2016; 7: 12704
  • 65 Schulman JM, Disch RL. Organometallics 2000; 19: 2932
  • 66 Shoji Y, Shigeno N, Takenouchi K, Sugimoto M, Fukushima T. Chem. Eur. J. 2018; 24: 13223
  • 67 Roscales S, Csákÿ AG. Org. Lett. 2015; 17: 1605
  • 68 Nogami M, Hirano K, Kanai M, Wang C, Saito T, Miyamoto K, Muranaka A, Uchiyama M. J. Am. Chem. Soc. 2017; 139: 12358
  • 69 Nogami M, Hirano K, Morimoto K, Tanioka M, Miyamoto K, Muranaka A, Uchiyama M. Org. Lett. 2019; 21: 3392
  • 70 Huo S. In PATAI’S Chemistry of Functional Groups . Rappoport Z. Wiley-VCH; New York: 2016: 1
  • 71 Xu S, Negishi E. Acc. Chem. Res. 2016; 49: 2158
  • 72 Ziegler K, Gellert H.-G, Martin H, Nagel K, Schneider J. Justus Liebigs Ann. Chem. 1954; 589: 91
  • 73 Ziegler K, Gellert H.-G, Zosel K, Holzkamp E, Schneider J, Söll M, Kroll W.-R. Justus Liebigs Ann. Chem. 1960; 629: 121
  • 74 Eisch JJ. In Comprehensive Organometallic Chemistry II, Vol. 11. Stone FG. A, Wilkinson G. Elsevier; Oxford: 1995: 277
  • 75 Eisch JJ, Burlinson NE, Boleslawski M. J. Organomet. Chem. 1976; 111: 137
  • 76 Bundens JW, Yudenfreund J, Francl MM. Organometallics 1999; 18: 3913
  • 77 Eisch JJ, Hordis CK. J. Am. Chem. Soc. 1971; 93: 4496
  • 78 Egger KW. J. Chem. Soc., Faraday Trans. 1 1972; 68: 1017
  • 79 Eisch JJ, Burlinson NE. J. Am. Chem. Soc. 1976; 98: 753
  • 80 Binger P, Schäfer H. Tetrahedron Lett. 1975; 16: 4673
  • 81 Richey HG, Kubala B, Smith MA. Tetrahedron Lett. 1981; 22: 3471
  • 82 Kinoshita H, Hirai N, Miura K. J. Org. Chem. 2014; 79: 8171
  • 83 Kinoshita H, Ishikawa T, Miura K. Org. Lett. 2011; 13: 6192
  • 84 Kinoshita H, Yaguchi K, Tohjima T, Hirai N, Miura K. Tetrahedron Lett. 2016; 57: 2039
  • 85 Eisch JJ, Fichter KC. J. Am. Chem. Soc. 1974; 96: 6815
  • 86 Eisch JJ, Amtmann R, Foxton MW. J. Organomet. Chem. 1969; 16: P55
  • 87 Eisch JJ, Sexsmith SR, Fichter KC. J. Organomet. Chem. 1990; 382: 273
  • 88 Mole T, Surtees JR. Aust. J. Chem. 1964; 17: 1229