Synthesis 2023; 55(12): 1824-1833
DOI: 10.1055/s-0042-1751428
short review

[1,3]-Dioxolo[4,5-f]benzodioxole (DBD) Fluorescent Dyes; Synthesis, Properties, and Applications

Pablo Wessig
,
Max Lehmann


Abstract

In this review we give an overview of the syntheses and photophysical properties of the new class of fluorescent dyes based on a [1,3]-dioxolo[4,5-f]benzodioxole core and their derivatives. Starting from commercially available reactants (e.g., sesamol, 1,2,4,5-tetrachlorobenzene) the core units can be prepared in a simple manner. Then, the benzene core can be derivatized via lithiation and their photophysical properties can be adjusted as desired. The obtained fluorophores have an absorption range of 403–520 nm and an emission range of 495–665 nm. This class of fluorescent dyes is also characterized by a long fluorescence lifetime, a high stability towards photobleaching, large Stokes shifts, and small size. Thus, the DBD dyes are optimally suited for optical sensing.

1 Introduction

2 Synthesis

3 Properties

4 Applications



Publication History

Received: 17 December 2022

Accepted after revision: 03 February 2023

Article published online:
09 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 McDonagh C, Burke CS, MacCraith BD. Chem. Rev. 2008; 108: 400
    • 2a Lakowicz JR. Principles of Fluorescence Spectroscopy, 3rd ed. Springer; New York: 2006
    • 2b Valeur B, Berbera-Santos MD. Molecular Fluorescence, 2nd ed. Wiley-VCH; Weinheim: 2013
  • 3 Croney JC, Jameson DM, Learmonth RP. Biochem. Mol. Biol. Educ. 2001; 29: 60
  • 6 Quantum Dots - Fundamentals, Synthesis and Applications . Ameta R, Bhatt J, Ameta S. Elsevier; Amsterdam: 2022
    • 7a Wetzl B, Gruber M, Oswald B, Durkop A, Weidgans B, Probst M, Wolfbeis OS. J. Chromatogr. B: Anal. Technol. Biomed. Life Sci. 2003; 793: 83
    • 7b Franz KJ, Nitz M, Imperiali B. ChemBioChem 2003; 4: 265
    • 7c Weh J, Duerkop A, Wolfbeis OS. ChemBioChem 2007; 8: 122
  • 8 Wu C, Chiu DT. Angew. Chem. Int. Ed. 2013; 52: 3086 ; and references cited therein
  • 9 Another possible name is 2H,6H-benzo[1,2-d:4,5-d′]bis[1,3]dioxole.
  • 10 Dallacker F, Edelmann W, Weiner A. Justus Liebigs Ann. Chem. 1968; 719: 112
  • 11 Krow GR. Org. React. 1993; 43: 251
  • 12 Norikura T, Fujiwara K, Narita T, Yamaguchi S, Morinaga Y, Iwai K, Matsue H. J. Agric. Food Chem. 2011; 59: 6974
  • 13 Wessig P, John L, Mertens M. Eur. J. Org. Chem. 2018; 1674
  • 14 Reddy TJ, Iwama T, Halpern HJ, Rawal VH. J. Org. Chem. 2002; 67: 4635
  • 15 Weider PR, Hegedus LS, Asada H. J. Org. Chem. 1985; 50: 4276
  • 16 Wawrzinek R, Ziomkowska J, Heuveling J, Mertens M, Herrmann A, Schneider E, Wessig P. Chem. Eur. J. 2013; 19: 17349
  • 17 Dallacker F, Sanders G. Chem.-Ztg. 1986; 110: 369
  • 18 Ye YQ, Koshino H, Onose J, Yoshikawa K, Abe N, Takahashi S. Org. Lett. 2007; 9: 4131
  • 19 Wessig P, Wawrzinek R, Möllnitz K, Feldbusch E, Schilde U. Tetrahedron Lett. 2011; 52: 6192
  • 20 Fan M.-J, Li G.-Q, Li L.-H, Yang S.-D, Liang Y.-M. Synthesis 2006; 2286
  • 21 Ariza X, Pineda O, Vilarrasa J, Shipps GW, Ma Y, Dai X. Org. Lett. 2001; 3: 1399
  • 22 Schwarze T, Mertens M, Müller P, Riemer J, Wessig P, Holdt H.-J. Chem. Eur. J. 2017; 23: 17186
  • 23 Meyners C, Wawrzinek R, Krämer A, Hinz S, Wessig P, Meyer-Almes F.-J. Anal. Bioanal. Chem. 2014; 4889
  • 24 Meyners C, Mertens M, Wessig P, Meyer-Almes F.-J. Chem. Eur. J. 2017; 23: 3107
    • 25a Tornøe CW, Christensen C, Meldal M. J. Org. Chem. 2002; 67: 3057
    • 25b Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew. Chem. Int. Ed. 2002; 41: 2596
  • 26 López de Guereñu A, Bastian P, Wessig P, John L, Kumke MU. Biosensors 2019; 9: 9
  • 27 Corey EJ, Seebach D. Angew. Chem. Int. Ed. 1965; 4: 1077
  • 28 Kopp K, Schiemann O, Fleck N. Molecules 2020; 25: 3666
  • 29 Wessig P, Freyse D, Schuster D, Kelling A. Eur. J. Org. Chem. 2020; 1732
  • 30 Stender KW, Woelki N, Klar G. Phosphorus Sulfur Silicon Relat. Elem. 1989; 42: 111
  • 31 Wessig P, John L, Sperlich E, Kelling A. Eur. J. Org. Chem. 2021; 499
  • 32 Hanzlik RP, Weller PE, Desai J, Zheng J, Hall LR, Slaughter DE. J. Org. Chem. 1990; 55: 2736
    • 33a Zhao Y, Xie Y, Xia C, Huang H. Adv. Synth. Catal. 2014; 356: 2471
    • 33b Li W, Zhao Y, Mai S, Song Q. Org. Lett. 2018; 20: 1162
  • 34 Wang T, Yu X, Zhang H, Wu S, Guo W, Wang J. Appl. Organometal. Chem. 2019; 33: e4939
  • 35 Sednev MV, Belov VN, Hell SW. Methods Appl. Fluoresc. 2015; 3: 042004
  • 36 Chang CW, Sud D, Mycek MA. Methods Cell Biol. 2007; 81: 495
  • 37 Haubitz T, John L, Wessig P, Kumke MU. J. Phys. Chem. A 2019; 123: 4717
  • 38 Haubitz T, John L, Freyse D, Wessig P, Kumke MU. J. Phys. Chem. A 2020; 124: 4345
  • 39 Wawrzinek R, Wessig P, Möllnitz K, Nikolaus J, Schwarzer R, Müller P, Herrmann A. Bioorg. Med. Chem. Lett. 2012; 22: 5367
  • 40 Heuveling J, Frochaux V, Ziomkowska J, Wawrzinek R, Wessig P, Herrmann A, Schneider E. Biochim. Biophys. Acta, Biomembr. 2014; 1838: 106
  • 41 Milazzo G, Mercatelli D, Di Muzio G, Triboli L, De Rosa P, Perini G, Giorgi FM. Genes 2020; 11: 556
  • 42 Schneckenburger H. Methods Appl. Fluoresc. 2020; 8: 013001
  • 43 Wawrzinek R, Wessig P. Dyes Pigm. 2015; 123: 39
  • 44 Wessig P, Behrends N, Kumke MU, Eisold U, Meiling T, Hille C. RSC Adv. 2016; 6: 33510
    • 45a Wessig P, Möllnitz K, Eiserbeck C. Chem. Eur. J. 2007; 13: 4859
    • 45b Wessig P, Gerngroß M, Freyse D, Bruhns P, Przezdziak M, Schilde U, Kelling A. J. Org. Chem. 2016; 81: 1125
  • 46 Wessig P, Behrends N, Kumke MU, Eisold U. Eur. J. Org. Chem. 2016; 4476
  • 47 Eisold U, Behrends N, Wessig P, Kumke MU. J. Phys. Chem. 2016; 120: 9935
  • 48 Hoang HT, Mertens M, Wessig P, Sellrie F, Schenk JA, Kumke MU. ACS Omega 2018; 3: 18109
  • 49 Bader D, Klier DT, Hettrich C, Bier FF, Wessig P. Anal. Methods 2016; 9: 1235
  • 50 Bell PJ. L, Karuso P. J. Am. Chem. Soc. 2003; 125: 9304
  • 51 Zipper H, Brunner H, Bernhagen J, Vitzthum F. Nucleic Acids Res. 2004; 32: e103
  • 52 Schwarze T, Riemer J, Müller H, John L, Holdt H.-J, Wessig P. Chem. Eur. J. 2019; 25: 12412
  • 53 Real-Time PCR: Current Technology and Applications . Logan J, Edwards K, Saunders N. Caister Academic Press; London: 2009
  • 54 Büchner D, John L, Mertens M, Wessig P. Chem. Eur. J. 2018; 24: 16183
  • 55 Mertens M, Hilsch M, Haralampiev I, Volkmer R, Wessig P, Müller P. ChemBioChem 2018; 19: 1643
  • 56 Wessig P, Moellnitz K, Wawrzinek R. EP 2399913, 2011
  • 57 Wessig P, Freyse D. DE 102017122275, 2019
  • 58 Wessig P, John L. DE 102020114139, 2021