Synthesis 2023; 55(17): 2757-2772
DOI: 10.1055/s-0042-1751458
paper
Special Issue Honoring Prof. Guoqiang Lin’s Contributions to Organic Chemistry

Divergent Synthesis of Isochroman-4-ols, 1,3-Dihydroisobenzo­furans, and Tetrahydro-2H-indeno[2,1-b]furan-2-ones via Epoxidation/Cyclization Strategy of (E)-(2-Stilbenyl/Styrenyl)methanols

Jira Jongcharoenkamol
a   Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210, Thailand
b   Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210, Thailand
c   Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok, Thailand 65000, Thailand
,
Kitsana Jancharoen
b   Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210, Thailand
,
Paratchata Batsomboon
b   Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210, Thailand
,
Somsak Ruchirawat
a   Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210, Thailand
b   Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210, Thailand
d   Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand 10400, Thailand
,
Poonsakdi Ploypradith
a   Program in Chemical Sciences, Chulabhorn Graduate Institute, 906 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210, Thailand
b   Laboratory of Medicinal Chemistry, Chulabhorn Research Institute, 54 Kamphaeng Phet 6 Road, Laksi, Bangkok, Thailand 10210, Thailand
d   Center of Excellence on Environmental Health and Toxicology, Office of the Permanent Secretary (OPS), Ministry of Higher Education, Science, Research and Innovation (MHESI), Bangkok, Thailand 10400, Thailand
› Author Affiliations
This research project is supported by the Thailand Science Research and Innovation (TSRI), TSRI-Chulabhorn Research Institute (Grant No. 36824/4274394 and 36827/4274407), the TSRI-Chulabhorn Graduate Institute, Chulabhorn Royal Academy (FRB660044/0240 Project Code 180874), and by a grant from the Center of Excellence on Environmental Health and Toxicology (EHT), OPS, MHESI.


Abstract

Starting from (E)-(2-stilbenyl/styrenyl)methanols, two distinct scaffolds, namely isochroman-4-ols and 1,3-dihydroisobenzofurans (phthalans), could be synthesized via an epoxidation/cyclization strategy. Indenes, readily accessible from the same starting materials, could undergo epoxidation/ring-opening/cyclization to provide tetrahydro-2H-indeno[2,1-b]furan-2-ones. Stilbene/styrene/indene epoxidation by m-CPBA or DMDO converted the nucleophilic olefin into the electrophilic epoxide, which subsequently underwent the regioselective ring-opening either by the hydroxy or the ester group to furnish the corresponding products with stereocontrol at the newly formed stereogenic centers. The reaction proceeded under substrate control to yield each product type exclusively.

Supporting Information



Publication History

Received: 28 February 2023

Accepted after revision: 04 May 2023

Article published online:
01 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Rotella DP. Heterocycles in Drug Discovery: Properties and Preparation. In Applications of Heterocycles in the Design of Drugs and Agricultural Products, Advances in Heterocyclic Chemistry, 1st ed., Vol. 134. Meanwell NA, Lolli ML. Academic Press; Cambridge USA: 2021: 149-183
  • 2 Orfali RS, Aly AH, Ebrahim W, Rudiyansyah, Proksch P. Phytochem. Lett. 2015; 13: 234
  • 3 Wang C, Wei G, Yang X, Yao H, Jiang J, Liu J, Shen M, Wu X, Xu J. Org. Biomol. Chem. 2014; 12: 7338
    • 4a Karmakar R, Pahari P, Mal D. Chem. Rev. 2014; 114: 6213 ; and references cited therein
    • 4b Ilya E, Kulikova L, Van der Eycken EV, Voskressensky L. ChemistryOpen 2018; 11: 842 ; and references cited therein
    • 4c Petracek FJ, Sugisaka N, Klohs MW, Parker RG, Bordner J, Roberts JD. Tetrahedron Lett. 1970; 707
    • 4d Saxena M, Gaur S, Prathipati P, Saxena AK. Bioorg. Med. Chem. Lett. 2006; 14: 8249
  • 5 Harper JK, Arif AM, Ford EJ, Strobel GA, Porco JA. Jr, Tomer DP, Oneill KL, Heider EM, Grant DM. Tetrahedron 2003; 59: 2471

    • For synthesis, see:
    • 6a Liu J, Zheng H.-X, Yao C.-Z, Sun B.-F, Kang Y.-B. J. Am. Chem. Soc. 2016; 138: 3294
    • 6b Ha TM, Wang Q, Zhu J. Chem. Commun. 2016; 52: 11100
    • 6c Pramanik C, Hivarekar RR, Deshmukh SS, Tripathy NK, Kotharkar S, Chaudhari A, Gurjar MK. Org. Process Res. Dev. 2012; 16: 824

    • For pharmacological effects, see:
    • 6d Bøgesø KP, Sánchez C. The Discovery of Citalopram and Its Refinement to Escitalopram. In Analogue-Based Drug Discovery III. Fischer J, Ganellin CR, Rotella DP. Wiley-VCH; Weinheim: 2013. 269 ; and references cited therein
    • 6e Sánchez C. Basic Clin. Pharmacol. Toxicol. 2006; 99: 91 ; and references cited therein
    • 6f Pollock BG. Expert Opin. Pharmacother. 2001; 2: 681 ; and references cited therein
    • 6g Bezchlibnyk-Butler K, Aleksic I, Kennedy SH. J. Psychiatry Neurosci. 2000; 25: 241 ; and references cited therein
    • 7a Camacho-Hernandez GA, Casiraghi A, Rudin D, Luethi D, Ku TC, Guthrie DA, Straniero V, Valoti E, Schütz GJ, Sitte HH, Newman AH. RSC Med. Chem. 2021; 12: 1174
    • 7b Eidal JN. N, Andersen J, Kristensen AS, Jørgensen AM, Bang-Andersen B, Jørgensen M, Strømgaard K. J. Med. Chem. 2008; 51: 3045
  • 8 Wang Q, Hu Z, Li X, Wang A, Wu H, Liu J, Cao S, Liu Q. J. Nat. Prod. 2018; 81: 2531
    • 9a Krasylenko Y, Komis G, Hlynska S, Vavrdová T, Ovečka M, Pospíšil T, Šamaj J. Front. Plant Sci. 2021; 12: 675981
    • 9b Tumer TB, Yilmaz B, Ozleyen A, Kurt B, Tok TT, Taskin KM, Kulabas SS. Comput. Biol. Chem. 2018; 76: 179
    • 9c Bromhead LJ, Visser J, McErlean CS. P. J. Org. Chem. 2014; 79: 1516
    • 9d Besserer A, Bécard G, Jauneau A, Roux C, Séjalon-Delmas N. Plant Physiol. 2008; 148: 402
    • 9e Mangnus EM, Dommerholt FJ, de Jong RL. P, Zwanenburg B. J. Agric. Food Chem. 1992; 40: 1230
    • 10a Jongcharoenkamol J, Chuathong P, Amako Y, Kono M, Poonswat P, Ruchirawat S, Ploypradith P. J. Org. Chem. 2018; 83: 13184
    • 10b Sarnpitak P, Trongchit K, Kostenko Y, Sathalalai S, Gleeson MP, Ruchirawat S, Ploypradith P. J. Org. Chem. 2013; 78: 8281
  • 11 Lekky A, Ruengsatra T, Ruchirawat S, Ploypradith P. J. Org. Chem. 2019; 84: 5277
  • 12 Songthammawat P, Phumjan T, Ruchirawat S, Ploypradith P. Synlett 2022; 33: 1312

    • For a similar strategy, see:
    • 13a Xing L, Zhang Y, Zhang Y, Ai Z, Li X, Du Y, Deng J, Zhao K. J. Org. Chem. 2019; 84: 13832

    • For other strategies, see:
    • 13b Chang M.-Y, Hsiao Y.-T, Lai K.-H. J. Org. Chem. 2018; 83: 14110
    • 13c Han X, Wu H, Dong C, Tien P, Xie W, Wu S, Zhou H.-B. RSC Adv. 2015; 5: 10005
    • 13d Ghosh M, Singha R, Dhara S, Ray JK. RSC Adv. 2015; 5: 85911
    • 13e Gabriele B, Salerno G, Fazio A, Pittelli R. Tetrahedron 2003; 59: 6251

      For Heck reactions, see:
    • 14a Nakashima Y, Hirata G, Sheppard TD. Nashikata T. Asian J. Org. Chem. 2020; 9: 480 ; and references cited therein
    • 14b Jagtap S. Catalysts 2017; 7: 267 ; and references cited therein
    • 14c McCartney D, Guiry PJ. Chem. Soc. Rev. 2011; 40: 5122 ; and references cited therein
    • 14d Beletskaya IP, Cheprakov AV. Chem. Rev. 2000; 100: 3009 ; and references cited therein
    • 14e Heck RF, Nolley JP. Jr. J. Org. Chem. 1972; 37: 2320

      For Suzuki vinylation reactions, see:
    • 15a Buszek KR, Brown N. Org. Lett. 2007; 9: 707
    • 15b Molander GA, Brown AR. J. Org. Chem. 2006; 71: 9681
  • 16 For similar observations, see: Phumjan T, Songthammawat P, Jongcharoenkamol J, Batsomboon P, Ruchirawat S, Ploypradith P. J. Org. Chem. 2021; 86: 13322
    • 17a Cabrera-Afonso MJ, Carreño MC, Urbano A. Adv. Synth. Catal. 2019; 361: 4468
    • 17b Chardin C, Rouden J, Livi S, Baudoux J. Green Chem. 2017; 19: 5054
    • 17c Mikula H, Svatunek D, Lumpi D, Glöcklhofer F, Hametner C, Fröhlich J. Org. Process Res. Dev. 2013; 17: 313
    • 17d Bach RD, Dmitrenko O, Adam W, Schambony S. J. Am. Chem. Soc. 2003; 125: 924
    • 17e Adam W, Saha-Möller CR, Zhao C.-G. Dioxirane Epoxidation of Alkenes. In Organic Reactions, Vol. 61, Chap. 2. Overman LE. John Wiley & Sons, Inc; New York: 2002. and references cited therein
    • 17f Murray RW. Chem. Rev. 1989; 5: 1187 ; and references cited therein
  • 18 Oxidation of the hydroxy group of the isochromanol 25g gave the corresponding ketone while retaining the same diastereomeric ratio, indicating that 25g was obtained as a mixture of diastereomers at the bisbenzylic position. Therefore, epoxidation followed by ring opening/cyclization proceeded with exclusive diastereoselectivity.
    • 19a Gilmore K, Mohamed RK, Alabugin IV. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2016; 6: 487
    • 19b Nicolaou KC, Prasad CV. C, Somers PK, Hwang CK. J. Am. Chem. Soc. 1989; 111: 5330
    • 20a Qin Y, Lv J, Lou S, Cheng J.-P. Org. Lett. 2014; 16: 5032
    • 20b Dethe DH, Murhade GM, Ghogh S. J. Org. Chem. 2015; 80: 8367
  • 21 Other Lewis/Brønsted acids (InCl3, In(OTf)3, Sc(OTf)3, Bi(OTf)3, and TFA) in catalytic amount (10 mol%) only gave the indanone product arising from the Meinwald rearrangement. When (+)-CSA was used in other solvents (CH2Cl2, THF, CH3CN, and toluene), a mixture of the desired tricyclic product and the Meinwald indanone was obtained.
  • 22 In these cases, either the epoxides were not observed at all or the corresponding epoxides may be observed in the NMR spectra of the crude mixtures but did not yield any tricyclic products upon treating the crude mixtures with CSA.
    • 23a Zanardi MM, Sarotti AM. J. Org. Chem. 2021; 86: 8544
    • 23b Zanardi MM, Suaŕez AG, Sarotti AM. J. Org. Chem. 2017; 82: 1873

      The 5/5 ring fusion of the indane-lactone (the bicyclo[3.3.0]) framework would require the stereochemistry at the ring junction to be cis. For additional examples, see:
    • 24a Gordon HL, Freeman S, Hudlicky T. Synlett 2005; 2911
    • 24b Fraile A, Parra A, Tortosa M, Alemán J. Tetrahedron 2014; 70: 9145 ; and references cited therein
    • 24c Chang S.-J, McNally D, Shary-Tehrany S, Hickey MJ, Boyd RH. J. Am. Chem. Soc. 1970; 92: 3109
    • 25a Gaussian 16, Revision C.01. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Petersson GA, Nakatsuji H, Li X, Caricato M, Marenich AV, Bloino J, Janesko BG, Gomperts R, Mennucci B, Hratchian HP, Ortiz JV, Izmaylov AF, Sonnenberg JL, Williams-Young D, Ding F, Lipparini F, Egidi F, Goings J, Peng B, Petrone A, Henderson T, Ranasinghe D, Zakrzewski VG, Gao J, Rega N, Zheng G, Liang W, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Throssell K, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark MJ, Heyd JJ, Brothers EN, Kudin KN, Staroverov VN, Keith TA, Kobayashi R, Normand J, Raghavachari K, Rendell AP, Burant JC, Iyengar SS, Tomasi J, Cossi M, Millam JM, Klene M, Adamo C, Cammi R, Ochterski JW, Martin RL, Morokuma K, Farkas O, Foresman JB, Fox DJ. Gaussian, Inc; Wallingford CT: 2016
    • 25b GaussView, Version 6. Dennington R, Keith TA, Millam JM. Semichem Inc; Shawnee Mission: 2016
  • 26 Rablen PR, Bally T. J. Org. Chem. 2011; 76: 4818
  • 27 CYLview20. Legault CY. Université de Sherbrooke; Canada: 2020. http://www.cylview.org