Synthesis
DOI: 10.1055/s-0042-1751552
short review

Stereodivergent Carbon–Carbon Bond-Forming Reactions

Alan R. Healy
A.R.H. thanks New York University Abu Dhabi (NYUAD) for funding.


Abstract

Stereodivergent catalysis has emerged as a compelling strategy for achieving stereochemical diversity in small-molecule library design and natural product synthesis. In this short review, key examples of pioneering catalytic carbon–carbon bond-forming transformations that provide access to all stereoisomers of a given product are presented. Current trends and future directions in the field are discussed, highlighting ongoing initiatives to enhance the efficiency and broaden the scope of stereodivergent methodologies.

1 Introduction

2 Mono-catalysis

2.1 Change of Reaction Conditions

2.2 Change of Catalyst

3 Multi-catalysis

3.1 Bifunctional Catalysis

3.2 Sequential/Cascade Catalysis

3.3 Synergistic/Cooperative Catalysis

4 Conclusions and Outlook



Publication History

Received: 15 December 2023

Accepted after revision: 03 January 2024

Article published online:
29 January 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Prieto Kullmer CN, Kautzky JA, Krska SW, Nowak T, Dreher SD, MacMillan DW. C. Science 2022; 376: 532
  • 2 Rein J, Rozema SD, Langner OC, Zacate SB, Hardy MA, Siu JC, Mercado BQ, Sigman MS, Miller SJ, Lin S. Science 2023; 380: 706
  • 3 Wagen CC, McMinn SE, Kwan EE, Jacobsen EN. Nature 2022; 610: 680
  • 4 Kim H, Gerosa G, Aronow J, Kasaplar P, Ouyang J, Lingnau JB, Guerry P, Farès C, List B. Nat. Commun. 2019; 10: 770
  • 5 Beletskaya IP, Nájera C, Yus M. Chem. Rev. 2018; 118: 5080
  • 6 Bihani M, Zhao JC.-G. Adv. Synth. Catal. 2017; 359: 534
  • 7 Krautwald S, Carreira EM. J. Am. Chem. Soc. 2017; 139: 5627
  • 8 He Z, Peng L, Guo C. Nat. Synth. 2022; 1: 393
  • 9 Schafroth MA, Zuccarello G, Krautwald S, Sarlah D, Carreira EM. Angew. Chem. Int. Ed. 2014; 53: 13898
  • 10 Rahman MdA, Cellnik T, Ahuja BB, Li L, Healy AR. Sci. Adv. 2023; 9: eadg8776
  • 11 Yamashita Y, Yasukawa T, Yoo W.-J, Kitanosono T, Kobayashi S. Chem. Soc. Rev. 2018; 47: 4388
  • 12 Amatov T, Tsuji N, Maji R, Schreyer L, Zhou H, Leutzsch M, List B. J. Am. Chem. Soc. 2021; 143: 14475
  • 13 Beutner GL, Denmark SE. Angew. Chem. Int. Ed. 2013; 52: 9086
  • 14 Kumagai N, Shibasaki M. Synthesis 2018; 51: 185
  • 15 Kennington SC. D, Teloxa SF, Mellado-Hidalgo M, Galeote O, Puddu S, Bellido M, Romea P, Urpí F, Aullón G, Font-Bardia M. Angew. Chem. Int. Ed. 2021; 60: 15307
  • 16 Mellado-Hidalgo M, Romero-Cavagnaro EA, Nageswaran S, Puddu S, Kennington SC. D, Costa AM, Romea P, Urpí F, Aullón G, Font-Bardia M. Org. Lett. 2023; 25: 659
  • 17 Kanayama T, Yoshida K, Miyabe H, Takemoto Y. Angew. Chem. Int. Ed. 2003; 42: 2054
  • 18 Gao J, Bai S, Gao Q, Liu Y, Yang Q. Chem. Commun. 2011; 47: 6716
  • 19 Bandini M, Cozzi PG, Umani-Ronchi A. Angew. Chem. Int. Ed. 2000; 39: 2327
  • 20 Huang Z.-Z, Kang Y.-B, Zhou J, Ye M.-C, Tang Y. Org. Lett. 2004; 6: 1677
  • 21 McInturff EL, Yamaguchi E, Krische MJ. J. Am. Chem. Soc. 2012; 134: 20628
  • 22 Martínez-Castañeda Á, Rodríguez-Solla H, Concellón C, del Amo V. J. Org. Chem. 2012; 77: 10375
  • 23 Cheng Q, Zhang F, Cai Y, Guo Y.-L, You S.-L. Angew. Chem. Int. Ed. 2018; 57: 2134
  • 24 Tian X, Cassani C, Liu Y, Moran A, Urakawa A, Galzerano P, Arceo E, Melchiorre P. J. Am. Chem. Soc. 2011; 133: 17934
  • 25 Wu X, Chen Z, Bai Y.-B, Dong VM. J. Am. Chem. Soc. 2016; 138: 12013
  • 26 Uraguchi D, Yoshioka K, Ooi T. Nat. Commun. 2017; 8: 14793
  • 27 Zhang L, Yuan H, Lin W, Cheng Y, Li P, Li W. Org. Lett. 2018; 20: 4970
  • 28 Kan SB. J, Maruyama H, Akakura M, Kano T, Maruoka K. Angew. Chem. Int. Ed. 2017; 56: 9487
  • 29 Notz W, Tanaka F, Watanabe S, Chowdari NS, Turner JM, Thayumanavan R, Barbas CF. J. Org. Chem. 2003; 68: 9624
  • 30 Mitsumori S, Zhang H, Cheong PH.-Y, Houk KN, Tanaka F, Barbas CF. J. Am. Chem. Soc. 2006; 128: 1040
  • 31 Lu G, Yoshino T, Morimoto H, Matsunaga S, Shibasaki M. Angew. Chem. Int. Ed. 2011; 50: 4382
  • 32 Nojiri A, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2009; 131: 3779
  • 33 Mechler M, Peters R. Angew. Chem. Int. Ed. 2015; 54: 10303
  • 34 Eitel SH, Jautze S, Frey W, Peters R. Chem. Sci. 2013; 4: 2218
  • 35 Teng H.-L, Luo Y, Nishiura M, Hou Z. J. Am. Chem. Soc. 2017; 139: 16506
  • 36 Hao X, Lin L, Tan F, Yin C, Liu X, Feng X. ACS Catal. 2015; 5: 6052
  • 37 Yan X.-X, Peng Q, Li Q, Zhang K, Yao J, Hou X.-L, Wu Y.-D. J. Am. Chem. Soc. 2008; 130: 14362
  • 38 Yan X.-X, Peng Q, Zhang Y, Zhang K, Hong W, Hou X.-L, Wu Y.-D. Angew. Chem. Int. Ed. 2006; 45: 1979
  • 39 Trost BM, Cramer N, Silverman SM. J. Am. Chem. Soc. 2007; 129: 12396
  • 40 Pluta R, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2019; 58: 2459
  • 41 Luparia M, Oliveira MT, Audisio D, Frébault F, Goddard R, Maulide N. Angew. Chem. Int. Ed. 2011; 50: 12631
  • 42 Weidner K, Sun Z, Kumagai N, Shibasaki M. Angew. Chem. Int. Ed. 2015; 54: 6236
  • 43 Zhou P, Shao X, Malcolmson SJ. J. Am. Chem. Soc. 2021; 143: 13999
  • 44 Larrow JF, Jacobsen EN. Organometallics in Process Chemistry . In Topics in Organometallic Chemistry, Vol. 6. Larsen R. Springer-Verlag; Berlin/Heidelberg: 2004: 123-152
  • 45 Yoon TP, Jacobsen EN. Science 2003; 299: 1691
  • 46 Lalic G, Aloise AD, Shair MD. J. Am. Chem. Soc. 2003; 125: 2852
  • 47 Bae H. Synlett 2015; 26: 705
  • 48 Allen AE, MacMillan DW. C. Chem. Sci. 2012; 3: 633
  • 49 Malakar CC, Dell’Amico L, Zhang W. Eur. J. Org. Chem. 2023; 26: e202201114
  • 50 Feng X, Zhou Z, Zhou R, Zhou Q.-Q, Dong L, Chen Y.-C. J. Am. Chem. Soc. 2012; 134: 19942
  • 51 Li X, Lu M, Dong Y, Wu W, Qian Q, Ye J, Dixon DJ. Nat. Commun. 2014; 5: 4479
  • 52 Ding P.-G, Zhou F, Wang X, Zhao Q.-H, Yu J.-S, Zhou J. Chem. Sci. 2020; 11: 3852
  • 53 Ding P.-G, Hu X.-S, Yu J.-S, Zhou J. Org. Lett. 2020; 22: 8578
  • 54 Verrier C, Melchiorre P. Chem. Sci. 2015; 6: 4242
  • 55 Wang Y, Liu X, Deng L. J. Am. Chem. Soc. 2006; 128: 3928
  • 56 Wang B, Wu F, Wang Y, Liu X, Deng L. J. Am. Chem. Soc. 2007; 129: 768
  • 57 Wang Y, Li H, Wang Y.-Q, Liu Y, Foxman BM, Deng L. J. Am. Chem. Soc. 2007; 129: 6364
  • 58 Huang Y, Walji AM, Larsen CH, MacMillan DW. C. J. Am. Chem. Soc. 2005; 127: 15051
  • 59 Simmons B, Walji AM, MacMillan DW. C. Angew. Chem. Int. Ed. 2009; 48: 4349
  • 60 Chi Y, Scroggins ST, Fréchet JM. J. J. Am. Chem. Soc. 2008; 130: 6322
  • 61 Masson-Makdissi J, Prieto L, Abel-Snape X, Lautens M. Angew. Chem. Int. Ed. 2021; 60: 16932
  • 62 Krautwald S, Sarlah D, Schafroth MA, Carreira EM. Science 2013; 340: 1065
  • 63 Krautwald S, Schafroth MA, Sarlah D, Carreira EM. J. Am. Chem. Soc. 2014; 136: 3020
  • 64 Kim S, Jeung S, Lee SY. ACS Catal. 2023; 13: 13838
  • 65 Wang H, Zhang R, Zhang Q, Zi W. J. Am. Chem. Soc. 2021; 143: 10948
  • 66 Zhang M.-M, Wang Y.-N, Wang B.-C, Chen X.-W, Lu L.-Q, Xiao W.-J. Nat. Commun. 2019; 10: 2716
  • 67 Cruz FA, Dong VM. J. Am. Chem. Soc. 2017; 139: 1029
  • 68 Bhaskararao B, Sunoj RB. ACS Catal. 2017; 7: 6675
  • 69 Næsborg L, Halskov KS, Tur F, Mønsted SM. N, Jørgensen KA. Angew. Chem. Int. Ed. 2015; 54: 10193
  • 70 Jiang X, Beiger JJ, Hartwig JF. J. Am. Chem. Soc. 2017; 139: 87
  • 71 Zhang Q, Zhu M, Zi W. Chem 2022; 8: 2784
  • 72 Zhu M, Wang P, Zhang Q, Tang W, Zi W. Angew. Chem. Int. Ed. 2022; 61: e202207621
  • 73 Jung Y, Yoo SY, Jin Y, You J, Han S, Yu J, Park Y, Cho SH. Angew. Chem. Int. Ed. 2023; 62: e202218794
  • 74 Bhaskararao B, Rotella ME, Kim DY, Kee J.-M, Kim KS, Kozlowski MC. J. Am. Chem. Soc. 2022; 144: 16171
  • 75 Zhang J, Gao Y.-S, Gu B.-M, Yang W.-L, Tian B.-X, Deng W.-P. ACS Catal. 2021; 11: 3810
  • 76 Singha S, Serrano E, Mondal S, Daniliuc CG, Glorius F. Nat. Catal. 2020; 3: 48
  • 77 Wen Y.-H, Zhang Z.-J, Li S, Song J, Gong L.-Z. Nat. Commun. 2022; 13: 1344
  • 78 Peng L, Wang M, Huang J, Guo C, Gong L.-Z, Song J. J. Am. Chem. Soc. 2023; 145: 28085
  • 79 Hu Q, He Z, Peng L, Guo C. Nat. Synth. 2022; 1: 322
  • 80 Zhu D.-X, Liu J.-G, Xu M.-H. J. Am. Chem. Soc. 2021; 143: 8583
  • 81 Huo X, He R, Zhang X, Zhang W. J. Am. Chem. Soc. 2016; 138: 11093
  • 82 Jiang X, Boehm P, Hartwig JF. J. Am. Chem. Soc. 2018; 140: 1239
  • 83 He Z.-T, Jiang X, Hartwig JF. J. Am. Chem. Soc. 2019; 141: 13066
  • 84 Wei L, Zhu Q, Xu S.-M, Chang X, Wang C.-J. J. Am. Chem. Soc. 2018; 140: 1508
  • 85 Huo X, Zhang J, Fu J, He R, Zhang W. J. Am. Chem. Soc. 2018; 140: 2080
  • 86 Luo Y, Ma Y, Li G, Huo X, Zhang W. Angew. Chem. Int. Ed. 2023; 62: e202313838
  • 87 Xiao L, Chang X, Xu H, Xiong Q, Dang Y, Wang C.-J. Angew. Chem. Int. Ed. 2022; 61: e202212948
  • 88 Wu H.-M, Zhang Z, Xiao F, Wei L, Dong X.-Q, Wang C.-J. Org. Lett. 2020; 22: 4852
  • 89 Chang X, Cheng X, Liu X.-T, Fu C, Wang W.-Y, Wang C.-J. Angew. Chem. Int. Ed. 2022; 61: e202206517
  • 90 Le TP, Tanaka S, Yoshimura M, Sato K, Kitamura M. Nat. Commun. 2022; 13: 5876
  • 91 Huo X, He R, Fu J, Zhang J, Yang G, Zhang W. J. Am. Chem. Soc. 2017; 139: 9819
  • 92 Huo X, Li G, Wang X, Zhang W. Angew. Chem. Int. Ed. 2022; 61: e202210086
  • 93 Zhu M, Zhang Q, Zi W. Angew. Chem. Int. Ed. 2021; 60: 6545
  • 94 Sheng C, Ling Z, Xiao J, Yang K, Xie F, Ma S, Zhang W. Angew. Chem. Int. Ed. 2023; 62: e202305680
  • 95 Chai W, Guo B, Zhang Q, Zi W. Chem Catal. 2022; 2: 1428
  • 96 Xie J.-H, Hou Y.-M, Feng Z, You S.-L. Angew. Chem. Int. Ed. 2023; 62: e202216396
  • 97 Zhang Q, Yu H, Shen L, Tang T, Dong D, Chai W, Zi W. J. Am. Chem. Soc. 2019; 141: 14554
  • 98 He R, Huo X, Zhao L, Wang F, Jiang L, Liao J, Zhang W. J. Am. Chem. Soc. 2020; 142: 8097
  • 99 Yang S.-Q, Wang Y.-F, Zhao W.-C, Lin G.-Q, He Z.-T. J. Am. Chem. Soc. 2021; 143: 7285
  • 100 Zhang J, Huo X, Xiao J, Zhao L, Ma S, Zhang W. J. Am. Chem. Soc. 2021; 143: 12622
  • 101 Zhao L, Luo Y, Xiao J, Huo X, Ma S, Zhang W. Angew. Chem. Int. Ed. 2023; 62: e202218146
  • 102 Kim B, Kim Y, Lee SY. J. Am. Chem. Soc. 2021; 143: 73
  • 103 Sigman MS, Harper KC, Bess EN, Milo A. Acc. Chem. Res. 2016; 49: 1292
  • 104 Piou T, Romanov-Michailidis F, Ashley MA, Romanova-Michaelides M, Rovis T. J. Am. Chem. Soc. 2018; 140: 9587
  • 105 Chen H, Yamaguchi S, Morita Y, Nakao H, Zhai X, Shimizu Y, Mitsunuma H, Kanai M. Cell Rep. Phys. Sci. 2021; 2: 100679