Synlett
DOI: 10.1055/s-0043-1763605
letter
Thieme Chemistry Journals Awardees 2023

Nickel-Catalyzed Hydroalkynylation of 1,3-Dienes with Simple Alkynes

Bo-Ying Yao
,
Wei-Guo Xiao
,
Li-Jun Xiao
,
Qi-Lin Zhou
We thank the National Key R&D Program of China (2022YFA1503200), the National Natural Science Foundation of China (Nos. 22201140 and 22188101), the Fundamental Research Funds for the Central Universities, and the Haihe Laboratory of Sustainable Chemical Transformations for financial support.


Abstract

A hydroalkynylation reaction of 1,3-dienes with simple alkynes, facilitated by an efficient nickel catalyst system with the 9,9-dimethyl-4,5-bis(diphenylphosphino)xanthene (Xantphos) ligand, is presented. This reaction displays a broad substrate range for alkynes, encompassing both aryl alkynes and alkyl alkynes, thereby overcoming previous constraints in 1,3-diene hydroalkynylation. The method offers a convenient and direct means for obtaining allylic alkynes with high atom and step economy.

Supporting Information



Publication History

Received: 12 September 2023

Accepted after revision: 16 October 2023

Article published online:
16 November 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Wang Z.-X, Bai X.-Y, Li B.-J. Synlett 2017; 28: 509
    • 1b Wang Y, He Y, Zhu S. Acc. Chem. Res. 2022; 55: 3519
    • 1c Zhao W, Lu H.-X, Zhang W.-W, Li B.-J. Acc. Chem. Res. 2023; 56: 308
    • 1d Sun X.-Y, Yao B.-Y, Xuan B, Xiao L.-J, Zhou Q.-L. Chem Catal. 2022; 2: 3140
    • 2a Matsuyama N, Tsurugi H, Satoh T, Miura M. Adv. Synth. Catal. 2008; 350: 2274
    • 2b Sakurada T, Sugiyama Y.-k, Okamoto S. J. Org. Chem. 2013; 78: 3583
    • 3a Saito S, Kawasaki T, Tsuboya N, Yamamoto Y. J. Org. Chem. 2001; 66: 796
    • 3b Ogata K, Murayama H, Sugasawa J, Suzuki N, Fukuzawa S.-i. J. Am. Chem. Soc. 2009; 131: 3176
    • 3c Rodrigo SK, Powell IV, Coleman MG, Krause JA, Guan H. Org. Biomol. Chem. 2013; 11: 7653
    • 3d Yang K, Wang P, Sun Z.-Y, Guo M, Zhao W, Tang X, Wang G. Org. Lett. 2021; 23: 3933
    • 3e Saito S, Yamamoto Y. Chem. Rev. 2000; 100: 2901
    • 4a Yin J, Chisholm JD. Chem. Commun. 2006; 632
    • 4b Shirakura M, Suginome M. J. Am. Chem. Soc. 2009; 131: 5060
    • 4c Tenaglia A, Le Jeune K, Giordano L, Buono G. Org. Lett. 2011; 13: 636
    • 4d Teng H.-L, Ma Y, Zhan G, Nishiura M, Hou Z. ACS Catal. 2018; 8: 4705
    • 4e Dian L, Marek I. ACS Catal. 2020; 10: 1289
    • 5a Trost BM, Kottirsch G. J. Am. Chem. Soc. 1990; 112: 2816
    • 5b Yamaguchi M, Omata K, Hirama M. Tetrahedron Lett. 1994; 35: 5689
    • 5c Bruyere D, Grigg R, Hinsley J, Hussain RK, Korn S, De La Cierva CO, Sridharan V, Wang J. Tetrahedron Lett. 2003; 44: 8669
    • 5d Rubin M, Markov J, Chuprakov S, Wink DJ, Gevorgyan V. J. Org. Chem. 2003; 68: 6251
    • 5e Pradhan TR, Kim HW, Park JK. Angew. Chem. Int. Ed. 2018; 57: 9930
    • 5f Jeanne-Julien L, Masson G, Kouoi R, Regazzetti A, Genta-Jouve G, Gandon V, Roulland E. Org. Lett. 2019; 21: 3136
    • 6a Tenaglia A, Giordano L, Buono G. Org. Lett. 2006; 8: 4315
    • 6b Fan B.-M, Yang Q.-j, Hu J, Fan C.-l, Li S.-f, Yu L, Huang C, Tsang WW, Kwong FY. Angew. Chem. Int. Ed. 2012; 51: 7821
    • 6c Fan B.-M, Xu J, Yang Q, Li S, Chen H, Liu S, Yu L, Zhou Y, Wang L. Org. Lett. 2013; 15: 5956

      For selected examples of coordination-assisted hydroalkynylation of alkenes, see:
    • 7a Zhang W, Wang Z, Bai X, Li B. Youji Huaxue 2020; 40: 1087
    • 7b Bai Z, Bai Z, Song F, Wang H, Chen G, He G. ACS Catal. 2020; 10: 933
    • 7c Gao P.-C, Wang Z.-X, Li B.-J. Org. Lett. 2021; 23: 9500
    • 7d Bai X.-Y, Zhang W.-W, Li Q, Li B.-J. J. Am. Chem. Soc. 2018; 140: 506
  • 8 For hydroalkynylation of vinyl ethers, see: Hosseyni S, Smith CA, Shi X. Org. Lett. 2016; 18: 6336

    • For selected examples of nucleophilic addition of alkynes to electron-deficient alkenes, see:
    • 9a Knöpfel TF, Carreira EM. J. Am. Chem. Soc. 2003; 125: 6054
    • 9b Yazaki R, Kumagai N, Shibasaki M. J. Am. Chem. Soc. 2010; 132: 10275
    • 9c Sawano T, Ashouri A, Nishimura T, Hayashi T. J. Am. Chem. Soc. 2012; 134: 18936
    • 9d Villarino L, García-Fandiño R, López F, Mascareñas JL. Org. Lett. 2012; 14: 2996
  • 11 Shirakura M, Suginome M. Angew. Chem. Int. Ed. 2010; 49: 3827
  • 12 For related linear dimerizations of terminal acetylenes with 1,3-dienes, see: Mitsudo T, Nakagawa Y, Watanabe K, Hori Y, Misawa H, Watanabe H, Watanabe Y. J. Org. Chem. 1985; 50: 565
    • 13a Cheng L, Li M.-M, Xiao L.-J, Xie J.-H, Zhou Q.-L. J. Am. Chem. Soc. 2018; 140: 11627
    • 13b Lv X.-Y, Fan C, Xiao L.-J, Xie J.-H, Zhou Q.-L. CCS Chem. 2019; 1: 328
    • 13c Cheng L, Li M.-M, Wang B, Xiao L.-J, Xie J.-H, Zhou Q.-L. Chem. Sci. 2019; 10: 10417
    • 13d Cheng L, Li M.-M, Li M.-L, Xiao L.-J, Xie J.-H, Zhou Q.-L. CCS Chem. 2022; 4: 2612
    • 13e Ma J.-T, Zhang T, Yao B.-Y, Xiao L.-J, Zhou Q.-L. J. Am. Chem. Soc. 2023; 145: 19195
    • 13f Xiao L.-J, Ye M.-C, Zhou Q.-L. Synlett 2019; 30: 361
  • 14 Zhang A, RajanBabu TV. J. Am. Chem. Soc. 2006; 128: 54
  • 15 Bini L, Müller C, Wilting J, von Chrzanowski L, Spek AL, Vogt D. J. Am. Chem. Soc. 2007; 129: 12622
  • 16 1,1′-[(1E)-3-Methylpent-1-en-4-yne-1,5-diyl]dibenzene (3a); Typical Procedure: In an N2-filled glove box, an oven-dried sealed tube equipped with a stirrer bar was charged with Ni(COD)2 (2.8 mg, 0.01 mmol) and Xantphos (11.6 mg, 0.02 mmol). THF (1 mL) and H2O (2.0 mmol) were injected into the tube, and the solution was stirred at 25 °C under N2 for 1 min. (E)-1-Phenyl-1,3-butadiene (1a; 39.0 mg, 0.3 mmol) and phenylacetylene (2a; 10.2 mg, 0.1 mmol) were then successively introduced into the system. The tube was sealed with a Teflon-lined screw cap and removed from the glove box, and the mixture was stirred at 60 °C for 12 h, then cooled to r.t. The resulting mixture was concentrated and the residue was purified by column chromatography (silica gel, pentane) to give a colorless oil; yield: 16.0 mg (0.069 mmol, 69%). 1H NMR (400 MHz, CDCl3): δ = 7.50–7.44 (m, 2 H), 7.41 (d, J = 7.2 Hz, 2 H), 7.37–7.28 (m, 5 H), 7.24 (d, J = 7.1 Hz, 1 H), 6.70 (dd, J = 15.7, 1.4 Hz, 1 H), 6.25 (dd, J = 15.7, 6.2 Hz, 1 H), 3.61–3.52 (m, 1 H), 1.46 (d, J = 7.0 Hz, 3 H). 13C NMR (101 MHz, CDCl3): δ = 137.1, 131.6, 131.1, 129.5, 128.5, 128.2, 127.7, 127.3, 126.3, 123.7, 91.6, 82.7, 29.6, 21.7.