Synlett 2021; 32(10): 971-980
DOI: 10.1055/a-1274-2777
account

Asymmetric Induction and Amplification in Stereodynamic Catalytic Systems by Noncovalent Interactions

Jan Felix Scholtes
,
Oliver Trapp
Generous financial support by the European Research Council (ERC) for a Starting Grant (No. 258740, AMPCAT) and the Max-Planck-Society is gratefully acknowledged.


In memoriam of Prof. Dr. Kilian Muñiz (1970–2020)

Abstract

The local transmission of chiral information by noncovalent interactions is one of the most fundamental processes broadly found in nature, i.e. in complex biochemical systems. This review summarizes our accomplishments in investigating chiral induction in stereodynamic ligands and catalysts by weak intermolecular interactions. It includes our efforts to characterize numerous stereodynamic compounds in detail with respect to their thermodynamic and kinetic properties. Furthermore, many stereolabile ligands for enantioselective catalysis are described, where directed stereoinduction afforded highly enantio- or diastereoenriched catalysts for subsequent selective asymmetric transformations. Various approaches for the dynamic enrichment of one of the catalyst’s conformers are presented, such as noncovalent interaction of the ligand with a chiral environment or a chiral solute. Finally, successful chemical systems are presented in which a process of chiral induction can be coupled with an autoinductive mechanism triggered by the chirality of its own reaction product, realizing Nature-inspired feedback loops resulting in self-amplifying, enantioselective catalytic reactions.

1 Introduction

2 Mapping the Stereodynamic Landscape

3 Chiral Induction by Noncovalent Interactions

4 Autoinduction and Chiral Amplification

5 Self-Alignment and Emergence of Chirality

6 Conclusion



Publication History

Received: 15 September 2020

Accepted after revision: 29 September 2020

Accepted Manuscript online:
29 September 2020

Article published online:
02 November 2020

© 2020. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Aiba S, Takamatsu N, Sasai T, Tokunaga Y, Kawasaki T. Chem. Commun. 2016; 52: 10834
    • 1b Elias WE. J. Chem. Educ. 1972; 49: 448
    • 1c Langenbeck W, Triem G. Z. Phys. Chem. (Leipzig) 1936; 177: 401
    • 1d Pavlov VA, Klabunovskii EI. Curr. Org. Chem. 2014; 18: 93
    • 1e Sögütoglu L.-C, Steendam RR. E, Meekes H, Vlieg E, Rutjes FP. J. T. Chem. Soc. Rev. 2015; 44: 6723
  • 2 Feringa BL, van Delden RA. Angew. Chem. Int. Ed. 1999; 38: 3418
  • 4 Frank FC. Biochim. Biophys. Acta 1953; 11: 459
    • 5a Girard C, Kagan HB. Angew. Chem. Int. Ed. 1998; 37: 2922
    • 5b Satyanarayana T, Abraham S, Kagan HB. Angew. Chem. Int. Ed. 2009; 48: 456
  • 6 Blackmond DG. Chem. Rev. 2020; 120: 4831
  • 7 Corminboeuf O, Quaranta L, Renaud P, Liu M, Jasperse CP, Sibi MP. Chem. Eur. J. 2003; 9: 28
  • 8 Todd MH. Chem. Soc. Rev. 2002; 31: 211
    • 9a Liu M, Zhang L, Wang T. Chem. Rev. 2015; 115: 7304
    • 9b Le Bailly BA. F, Clayden J. Chem. Commun. 2016; 52: 4852
    • 9c Merten C, Xu Y. Angew. Chem. Int. Ed. 2013; 52: 2073
    • 9d Sunahori FX, Yang G, Kitova EN, Klassen JS, Xu Y. Phys. Chem. Chem. Phys. 2013; 15: 1873
  • 10 Wenz KM, Leonhardt-Lutterbeck G, Breit B. Angew. Chem. Int. Ed. 2018; 57: 5100
  • 11 Crawford JM, Sigman MS. Synthesis 2019; 51: 1021
    • 12a Felix D, Eschenmoser A. Angew. Chem. 1968; 80: 197
    • 12b Lehn JM. Top. Curr. Chem. 1970; 15: 311
    • 12c Kostyanovsky RG, Kadorkina GK, Kostyanovsky VR, Schurig V, Trapp O. Angew. Chem. Int. Ed. 2000; 39: 2938
    • 12d Reich S, Trapp O, Schurig V. J. Chromatogr. A 2000; 892: 487
    • 12e Trapp O, Schurig V, Kostyanovsky RG. Chem. Eur. J. 2004; 10: 951
    • 12f Trapp O, Sahraoui L, Hofstadt W, Könen W. Chirality 2010; 22: 284
    • 12g Kamuf M, Trapp O. Chirality 2013; 25: 224
    • 12h Zawatzky K, Kamuf M, Trapp O. Chirality 2015; 27: 156
    • 13a Trapp O, Schoetz G, Schurig V. Chirality 2001; 13: 403
    • 13b Trapp O, Schurig V. J. Am. Chem. Soc. 2000; 122: 1424
  • 14 Aikawa K, Mikami K. Chem. Commun. 2012; 48: 11050
    • 15a Jung M, Schurig V. J. Am. Chem. Soc. 1992; 114: 529
    • 15b Trapp O, Schurig V. Comput. Chem. (Oxford U. K.) 2001; 25: 187
    • 15c Trapp O, Schurig V. Chirality 2002; 14: 465
    • 15d D’Acquarica I, Gasparrini F, Pierini M, Villani C, Zappia G. J. Sep. Sci. 2006; 29: 1508
    • 15e Trapp O. Top. Curr. Chem. 2013; 341: 231
    • 17a Maier F, Trapp O. Angew. Chem. Int. Ed. 2012; 51: 2985
    • 17b Maier F, Trapp O. Chirality 2013; 25: 126
    • 17c Storch G, Maier F, Wessig P, Trapp O. Eur. J. Org. Chem. 2016; 5123
  • 18 Storch G, Pallmann S, Rominger F, Trapp O. Beilstein J. Org. Chem. 2016; 12: 1453
    • 19a Aikawa K, Kojima M, Mikami K. Angew. Chem. Int. Ed. 2009; 48: 6073
    • 19b Aikawa K, Takabayashi Y, Kawauchi S, Mikami K. Chem. Commun. 2008; 5095
    • 19c Mikami K, Aikawa K. Org. Lett. 2002; 4: 99
    • 19d Mikami K, Aikawa K, Yusa Y. Org. Lett. 2001; 4: 95
    • 19e Mikami K, Korenaga T, Terada M, Ohkuma T, Pham T, Noyori R. Angew. Chem. Int. Ed. 1999; 38: 495
    • 19f Mikami K, Wakabayashi K, Aikawa K. Org. Lett. 2006; 8: 1517
    • 19g Ohkuma T, Doucet H, Pham T, Mikami K, Korenaga T, Terada M, Noyori R. J. Am. Chem. Soc. 1998; 120: 1086
    • 19h Yamanaka M, Mikami K. Organometallics 2002; 21: 5847
    • 19i Punniyamurthy T, Mayr M, Dorofeev AS, Bataille CJ, Gosiewska S, Nguyen B, Cowley AR, Brown JM. Chem. Commun. 2008; 5092
    • 19j Becker JJ, White PS, Gagné MR. J. Am. Chem. Soc. 2001; 123: 9478
    • 19k Pelz KA, White PS, Gagné MR. Organometallics 2004; 23: 3210
    • 19l Faller JW, Wilt JC. J. Organomet. Chem. 2006; 691: 2207
    • 19m Oczipka P, Muller D, Leitner W, Franciò G. Chem. Science 2016; 7: 678
    • 19n Schmitkamp M, Chen D, Leitner W, Klankermayer J, Franciò G. Chem. Commun. 2007; 4012
    • 20a Wakabayashi K, Aikawa K, Kawauchi S, Mikami K. J. Am. Chem. Soc. 2008; 130: 5012
    • 20b Yu J, RajanBabu TV, Parquette JR. J. Am. Chem. Soc. 2008; 130: 7845
    • 20c Imai Y, Zhang W, Kida T, Nakatsuji Y, Ikeda I. Tetrahedron Lett. 1997; 38: 2681
    • 20d Jia J, Ling Z, Zhang Z, Tamura K, Gridnev ID, Imamoto T, Zhang W. Adv. Synth. Catal. 2018; 360: 738
  • 21 Yashima E, Ousaka N, Taura D, Shimomura K, Ikai T, Maeda K. Chem. Rev. 2016; 116: 13752
    • 22a Green MM, Peterson NC, Sato T, Teramoto A, Cook R, Lifson S. Science 1995; 268: 1860
    • 22b Palmans AR. A, Vekemans JA. J. M, Havinga EE, Meijer EW. Angew. Chem., Int. Ed. Engl. 1997; 36: 2648
    • 23a Ke YZ, Nagata Y, Yamada T, Suginome M. Angew. Chem. Int. Ed. 2015; 54: 9333
    • 23b Nagata Y, Nishikawa T, Suginome M. J. Am. Chem. Soc. 2015; 137: 4070
    • 23c Nagata Y, Nishikawa T, Suginome M. ACS Macro Lett. 2016; 5: 519
    • 23d Nagata Y, Yamada T, Adachi T, Akai Y, Yamamoto T, Suginome M. J. Am. Chem. Soc. 2013; 135: 10104
  • 24 Yamamoto T, Murakami R, Komatsu S, Suginome M. J. Am. Chem. Soc. 2018; 140: 3867
    • 25a Nagata Y, Ohashi S, Suginome M. J. Polym. Sci., Part A: Polym. Chem. 2012; 50: 1564
    • 25b Clayden J, Vassiliou N. Org. Biomol. Chem. 2006; 4: 2667
    • 26a Frank H, Nicholson GJ, Bayer E. Angew. Chem. Int. Ed. 1978; 17: 363
    • 26b Feibush B. Chirality 1998; 10: 382
    • 26c Pirkle WH, Bowen WE. J. High Resolut. Chromatogr. 1994; 17: 629
  • 27 Maier F, Trapp O. Angew. Chem. Int. Ed. 2014; 53: 8756
  • 28 Rieger M, Westheimer FH. J. Am. Chem. Soc. 1950; 72: 19
  • 29 Storch G, Deberle L, Menke J.-M, Rominger F, Trapp O. Chirality 2016; 28: 744
  • 30 Storch G, Trapp O. Chirality 2018; 30: 1150
    • 31a Storch G, Haas M, Trapp O. Chem. Eur. J. 2017; 23: 5414
    • 31b Storch G, Siebert M, Rominger F, Trapp O. Chem. Commun. 2015; 51: 15665
  • 32 Pirkle WH, Welch CJ, Lamm B. J. Org. Chem. 1992; 57: 3854
  • 34 Romanazzi G, Degennaro L, Mastrorilli P, Luisi R. ACS Catal. 2017; 7: 4100
  • 35 Storch G, Trapp O. Nat. Chem. 2017; 9: 179
    • 36a Puchot C, Samuel O, Dunach E, Zhao S, Agami C, Kagan HB. J. Am. Chem. Soc. 1986; 108: 2353
    • 36b Guillaneux D, Zhao S.-H, Samuel O, Rainford D, Kagan HB. J. Am. Chem. Soc. 1994; 116: 9430
    • 36c Noble-Terán ME, Buhse T, Cruz J.-M, Coudret C, Micheau J.-C. ChemCatChem 2016; 8: 1836
    • 37a Soai K, Shibata T, Morioka H, Choji K. Nature 1995; 378: 767
    • 37b Shibata T, Yonekubo S, Soai K. Angew. Chem. Int. Ed. 1999; 38: 659
    • 37c Soai K, Kawasaki T, Matsumoto A. Acc. Chem. Res. 2014; 47: 3643
    • 38a Blackmond DG, McMillan CR, Ramdeehul S, Schorm A, Brown JM. J. Am. Chem. Soc. 2001; 123: 10103
    • 38b Blackmond DG. Tetrahedron: Asymmetry 2006; 17: 584
    • 38c Gehring T, Quaranta M, Odell B, Blackmond DG, Brown JM. Angew. Chem. Int. Ed. 2012; 51: 9539
  • 39 Athavale SV, Simon A, Houk KN, Denmark SE. Nat. Chem. 2020; 12: 412
  • 40 Trapp O, Lamour S, Maier F, Siegle AF, Zawatzky K, Straub BF. Chem. Eur. J. 2020; in press; DOI: 10.1002/chem.202003260.
    • 41a Alberts AH, Wynberg H. J. Am. Chem. Soc. 1989; 111: 7265
    • 41b Feringa B, Wynberg H. J. Am. Chem. Soc. 1976; 98: 3372
    • 41c Szlosek M, Figadère B. Angew. Chem. Int. Ed. 2000; 39: 1799
  • 42 Heller DP, Goldberg DR, Wulff WD. J. Am. Chem. Soc. 1997; 119: 10551
    • 43a Danda H, Nishikawa H, Otaka K. J. Org. Chem. 1991; 56: 6740
    • 43b Shvo Y, Gal M, Becker Y, Elgavi A. Tetrahedron: Asymmetry 1996; 7: 911
  • 44 Wynberg H, Feringa B. Tetrahedron 1976; 32: 2831
    • 45a Pirkle WH, Murray PG, Rausch DJ, McKenna ST. J. Org. Chem. 1996; 61: 4769
    • 45b Pirkle WH, Murray PG, Wilson SR. J. Org. Chem. 1996; 61: 4775
  • 46 Scholtes JF, Trapp O. Chirality 2019; 31: 1028
    • 47a Feibush B. J. Chem. Soc. D 1971; 544
    • 47b Schurig V, Buerkle W. J. Am. Chem. Soc. 1982; 104: 7573
    • 47c Uccello-Barretta G, Nazzi S, Balzano F, Levkin PA, Schurig V, Salvadori P. Eur. J. Org. Chem. 2007; 3219
    • 47d Levkin PA, Ruderisch A, Schurig V. Chirality 2006; 18: 49
    • 47e Levkin PA, Levkina A, Czesla H, Schurig V. Anal. Chem. 2007; 79: 4401
    • 47f Levkin PA, Levkina A, Czesla H, Nazzi S, Schurig V. J. Sep. Sci. 2007; 30: 98
    • 48a Kokan Z, Kirin SI. Eur. J. Org. Chem. 2013; 8154
    • 48b Kokan Z, Glasovac Z, Majerić Elenkov M, Gredičak M, Jerić I, Kirin SI. Organometallics 2014; 33: 4005
    • 48c Laungani AC, Breit B. Chem. Commun. 2008; 844
    • 48d Mann E, Montero A, Maestro MA, Herradón B. Helv. Chim. Acta 2002; 85: 3624
    • 48e Herradón B, Montero A, Mann E, Maestro MA. CrystEngComm 2004; 6: 513
    • 48f Moriuchi T, Nomoto A, Yoshida K, Ogawa A, Hirao T. J. Am. Chem. Soc. 2001; 123: 68
    • 48g van Staveren DR, Weyhermuller T, Metzler-Nolte N. Dalton Trans. 2003; 210
    • 48h Kirin SI, Kraatz H.-B, Metzler-Nolte N. Chem. Soc. Rev. 2006; 35: 348
    • 48i Zimbron JM, Caumes X, Li Y, Thomas CM, Raynal M, Bouteiller L. Angew. Chem. Int. Ed. 2017; 56: 14016
  • 49 Scholtes JF, Trapp O. Angew. Chem. Int. Ed. 2019; 58: 6306
  • 50 Scholtes JF, Trapp O. Chem. Eur. J. 2019; 25: 11707
  • 51 Scholtes JF, Trapp O. Organometallics 2019; 38: 3955