Synlett 2022; 33(10): 983-987
DOI: 10.1055/a-1801-4344
letter

Synthesis of the Icetexane Diterpenoids (±)-Rosmaridiphenol, (±)-Pisiferin, and (±)-Barbatusol from Abietane

Thuy Quynh Le
,
JuHui Lee
,
Chang Ho Oh
This research was supported by a Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (NRF-2021R1F1A1049992).


Abstract

We report the rearrangement of abietane core with trifluoromethanesulfonic anhydride in pyridine to afford the icetexane core, a key intermediate for total syntheses of the structurally intriguing and biologically active compounds (±)-barbatusol, (±)-rosmaridiphenol, and (±)-pisiferin.

Supporting Information



Publication History

Received: 08 February 2022

Accepted after revision: 17 March 2022

Accepted Manuscript online:
17 March 2022

Article published online:
12 April 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Fernández-Alonso JL, Vega N, Filgueira JJ, Pérez G. Biochem. Syst. Ecol. 2003; 31: 617
    • 1b Garcia Vallejo MC, Moujir L, Burillo J, León Guerra L, González M, Diaz Peñate R, San Andres L, Gutiérrez Luis J, López Blanco F, Ruiz de Galarreta CM. Flavour Fragrance J. 2006; 21: 277
    • 1c Mohammadhosseini M, Pazoki A, Akhlaghi H. Chem. Nat. Compd. 2008; 44: 127
    • 1d Guajardo Touche EM, Gómez Lopez E, Reyes AP, Sánchez H, Honecker F, Achenbach H. Phytochemistry 1997; 45: 387
  • 2 Amaro-Luis JM, Herrera JR, Luis JG. Phytochemistry 1998; 47: 895
    • 3a Jassbi AR, Zare S, Firuzi O, Xiao J. Phytochem. Rev. 2016; 15: 829
    • 3b Wu Y.-B, Ni Z.-Y, Shi Q.-W, Dong M, Kiyota H, Gu Y.-C, Cong B. Chem. Rev. 2012; 112: 5967
    • 3c Bisio A, Pedrelli F, D’Ambola M, Labanca F, Schito AM, Govaerts R, De Tommasi N, Milella L. Phytochem. Rev. 2019; 18: 665
    • 3d Esquivel B, Calderón JS, Sánchez AA, Ramamoorthy TP, Flores EA, Dominguez RM. Rev. Latinoam. Quim. 1996; 24: 44
    • 3e Esquivel B, Calderón JS, Arano MG, Hernández PM, Sánchez AA. Rev. Latinoam. Quim. 2005; 33: 82
    • 3f Esquivel B. Nat. Prod. Commun. 2008; 3: 989
    • 4a Zhang D, Guo J, Zhang M, Liu X, Ba M, Tao X, Yu L, Guo Y, Dai J. J. Nat. Prod. 2017; 80: 3241
    • 4b Guardia JJ, Tapia R, Mahdjour S, Rodriguez-Serrano F, Mut-Salud N, Chahboun R, Alvarez-Manzaneda E. J. Nat. Prod. 2017; 80: 308
    • 4c Esquivel B, Bustos-Brito C, Sánchez-Castellanos M, Nieto-Camacho A, Ramírez-Apan T, Joseph-Nathan P, Quijano L. Molecules 2017; 22: 1690
    • 4d Bisio A, De Mieri M, Milella L, Schito AM, Parricchi A, Russo D, Alfei S, Lapillo M, Tuccinardi T, Hamburger M, De Tommasi N. J. Nat. Prod. 2017; 80: 503
    • 4e Xia F, Luo D, Wang T, Ji X, Xu G. Fitoterapia 2020; 142: 104521
    • 4f Huang K.-J, Wang H, Xie W.-Z, Zhang H.-S. Spectrochim. Acta, Part A 2007; 68: 1180
    • 4g Kabouche A, Kabouche Z, Öztürk M, Kolak U, Topçu G. Food Chem. 2007; 102: 1281
    • 4h Bustos-Brito C, Joseph-Nathan P, Burgueño-Tapia E, Martínez-Otero D, Nieto-Camacho A, Calzada F, Yépez-Mulia L, Esquivel B, Quijano L. J. Nat. Prod. 2019; 82: 1207
    • 5a Kobayashi K, Nishino C. Agric. Biol. Chem. 1986; 50: 2405
    • 5b Kobayashi K, Nishino C, Fukushima M, Shiobara Y, Kodama M. Agric. Biol. Chem. 1988; 52: 77
  • 6 Kobayashi K, Nishino C, Tomita H, Fukushima M. Phytochemistry 1987; 26: 3175
  • 7 Naidu VG. M, Atmakur H, Katragadda SB, Devabakthun B, Kota A, Reddy SC. K, Kuncha M, Vishnu Vardhan MV. P. S, Kulkarni P, Janaswamy MR, Sistla R. Phytomedicine 2014; 21: 497
  • 8 Berger EA, Murphy PM, Farber JM. Annu. Rev. Immunol. 1999; 17: 657
  • 9 Giacomelli E, Bertrand S, Nieverglt A, Zwick V, Simoes-Pires C, Marcourt L, Rivara-Minten E, Cuendet M, Bisio A, Wolfender J.-L. Phytochemistry 2013; 96: 257
  • 10 Rodríguez-Hahn L, Esquivel B, Sánchez AA, Sánchez C, Cárdenas J, Ramamoorthy TP. Rev. Latinoam. Quim. 1989; 20: 105
    • 11a Watson WH, Tara Z, Dominguez XA, Gonzales H, Guiterrez M, Aragon R. Tetrahedron Lett. 1976; 17: 2501
    • 11b Sánchez C, Cárdenas J, Rodríguez-Hahn L, Ramamoorthy TP. Phytochemistry 1989; 28: 1681
    • 11c González AG, Andrés LS, Luis JG, Brito I, Rodríguez ML. Phytochemistry 1991; 30: 4067
    • 11d Fraga BM, Díaz CE, Guadaño A, González-Coloma A. J. Agric. Food Chem. 2005; 53: 5200
    • 11e Simmons E, Yen JR, Sarpong R. Org. Lett. 2007; 9: 2705
    • 11f Ziang Z.-Y, Huang C.-G, Xiong H.-B, Tian K, Liu W.-X, Hu Q.-F, Wang H.-B, Yang G.-Y, Huang X.-Z. Tetrahedron Lett. 2013; 54: 3886
    • 11g Kelecom A. Tetrahedron 1983; 39: 3603
    • 12a Tuckett MW, Watkins WJ, Whitby RJ. Tetrahedron Lett. 1998; 39: 123
    • 12b Simmons EM, Sarpong R. Org. Lett. 2006; 8: 2883
    • 12c Martinez-Solorio D, Jennings MP. Org. Lett. 2009; 11: 189
    • 12d Wang X, Pan X, Zhang C, Chen Y. Synth. Commun. 1995; 25: 3413
    • 12e Wang X.-C, Pan X.-F. J. Indian Chem. Soc. 1996; 73: 497
    • 12f Ning C, Wang X.-C, Pan X.-F. Synth. Commun. 1999; 29: 2115
    • 12g Cortez F. deJ, Lapointe D, Hamlin AM, Simmons EM, Sarpong R. Tetrahedron 2013; 69: 5665
    • 12h Simmons EM, Yen JR, Sarpong R. Org. Lett. 2007; 9: 2705
  • 13 Matsumoto T, Imai S, Yoshinari T, Matsuno S. Bull. Chem. Soc. Jpn. 1986; 59: 3103
  • 14 Kametani T, Kondoh H, Tsubuki M, Honda T. J. Chem. Soc., Perkin Trans. 1, 1990; 5
    • 15a Thommen C, Neuburger M, Gademann K. Chem. Eur. J. 2017; 23: 120
    • 15b Cao W, Liu T, Yang S, Liu M, Pan Z, Zhou Y, Deng X. J. Nat. Prod. 2021; 84: 2012
    • 15c Nisigaki E, Sugamoto K, Nishida M, Matsushita Y.-i. Chem. Lett. 2016; 45: 746
  • 17 (4aR,11aS)-8-Isopropyl-7-methoxy-1,1-dimethyl-1,2,3,4a,5,11a-hexahydro-4H-dibenzo[a,d][7]annulen-4-one (4) and (4aR,11aS)-8-Isopropyl-7-methoxy-1,1-dimethyl-1,2,3,4a,5,11a-hexahydro-4H-dibenzo[a,d][7]annulen-4-one (4) Tf2O (0.2 mL, 5.2 mmol, 2 equiv) was added to a solution of 3 (860 mg, 2.6 mmol, 1 equiv) in anhyd pyridine (8.00 mL) at 0 °C, and the resulting mixture was stirred at 0 °C for 5 min and then at rt for 1 h. The mixture was then diluted with H2O (50 mL) and extracted with EtOAc (2 × 30 mL). The filtrate was washed sequentially with 10% aq NaHCO3 (2 × 10 mL), 1 M HCl (10 mL), and brine (5 mL), then dried (Na2SO4) and filtered. The residue was washed with EtOAc, and the filtrate was evaporated to give a residue that was purified by chromatography [silica gel, EtOAc–hexane (1:20)] to give a yellow solid; yield: 610 mg (75%); mp 156–157 °C. cis-4 1H NMR (400 MHz, CDCl3): δ = 6.93 (s, 1 H), 6.69 (s, 1 H), 6.56 (dd, J = 10.6, 1.8 Hz, 1 H), 5.84 (dd, J = 10.6, 6.7 Hz, 1 H), 3.84 (s, 3 H), 3.46–3.38 (m, 1 H), 3.32–3.23 (m, 1 H), 2.96 (dd, J = 14.0, 10.9 Hz, 1 H), 2.56 (dd, J = 14.0, 6.4 Hz, 1 H), 2.52–2.42 (m, 1 H), 2.41–2.27 (m, 2 H), 2.01–1.89 (m, 1 H), 1.68–1.59 (m, 1 H), 1.26–1.17 (m, 9 H), 0.99 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 211.5, 155.8, 138.5, 134.5, 130.9, 128.9, 128.4, 128.2, 111.7, 56.2, 55.6, 52.8, 41.3, 38.6, 34.5, 32.6, 29.8, 26.6, 22.8, 20.1. trans-4 1H NMR (400 MHz, CDCl3): δ = 6.96 (s, 1 H), 6.73 (s, 1 H), 6.50 (dd, J = 12.2, 2.3 Hz, 1 H), 5.78 (dd, J = 12.2, 3.9 Hz, 1 H), 3.82 (s, 3 H), 3.31–3.21 (m, 2 H), 2.84–2.68 (m, 2 H), 2.55–2.42 (m, 1 H), 2.40–2.28 (m, 2 H), 1.80–1.60 (m, 2 H), 1.19 (dd, J = 6.9, 1.2 Hz, 6 H), 1.09 (s, 3 H), 1.08 (s, 3 H). 13C NMR (101 MHz, CDCl3): δ = 211.5, 155.8, 138.4, 134.5, 130.9, 128.9, 128.4, 128.1, 111.7, 56.1, 55.6, 52.8, 41.3, 38.6, 34.5, 32.6, 29.8, 26.5, 22.8, 20.0. HRMS (ESI): m/z [M + Na]+ calcd for C21H28NaO2: 335.1987; found: 335.1986.
  • 18 Majetich G, Hicks R, Zhang Y, Tian X, Feltman TL, Fang J, Duncan S. J. Org. Chem. 1996; 61: 8169
    • 19a Tada M, Ohkanda T, Kurabe J. Chem. Pharm. Bull. 2010; 58: 27
    • 19b Bernini R, Fabrizi G, Pouységu L, Deffieux D, Quideau S. Curr. Org. Synth. 2012; 9: 650
    • 19c El Had MA, Guardia JJ, Ramos JM, Taourirte M, Chahboun R, Alvarez-Manzaneda E. Org. Lett. 2018; 20: 5666
  • 20 Zhang J, Jin Y, Qiu FQ. Org. Lett. 2020; 22: 7415