Synthesis 2022; 54(22): 4917-4931
DOI: 10.1055/a-1868-4148
feature

Use of Vinyl Sulfides in Fischer Indole Reactions

Parul Pal
,
Meghan Fragis
,
,
,
Jakob Magolan
This research was supported by a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (RGPIN-2018-06438), the McMaster University’s Faculty of Health Sciences Dean’s Fund, and by a generous endowed gift from the Boris Family. M.F. was supported by a Canada Graduate Scholarship (CGS-M).


Abstract

Vinyl sulfides accessed via Wittig olefination with thioalkylphosphonium salts are used as aldehyde- or ketone surrogates in Fischer indole reactions. These vinyl sulfides react with arylhydrazines in the presence of TsOH·H2O in refluxing ethanol or dichloroethane to yield diverse 3-substituted and 2,3-disubstituted indoles or azaindoles. The utility of this chemistry is highlighted with the efficient preparation of three biomedically relevant compounds: 4-aza-melatonin, a furoindoline, and an indomethacin-like CRTh2 antagonist.

Supporting Information



Publication History

Received: 13 April 2022

Accepted after revision: 02 June 2022

Accepted Manuscript online:
02 June 2022

Article published online:
12 July 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Current address: Srinivas Dharavath, Energetic Materials Laboratory, Department of Chemistry, Indian Institute of Technology, Kanpur, Kanpur 208016, Uttar Pradesh, India.
  • 2 Wittig G, Geissler G. Justus Liebigs Ann. Chem. 1953; 580: 44
  • 3 Maryanoff BE, Reitz AB. Chem. Rev. 1989; 89: 863
  • 4 Vedejs E, Peterson MJ. In Topics in Stereochemistry, Vol. 21. Eliel EL, Wilen SH. Wiley; New York: 1994
  • 5 Byrne PA, Gilheany DG. Chem. Soc. Rev. 2013; 42: 6670
  • 6 Levine SG. J. Am. Chem. Soc. 1958; 80: 6150
  • 7 Wittig G, Knauss E. Angew. Chem. 1959; 71: 127
  • 8 Fragis M, Deobald JL, Dharavath S, Scott J, Magolan J. Org. Lett. 2021; 23: 4548
  • 9 Corey EJ, Shulman JI. J. Org. Chem. 1970; 35: 777
  • 10 Mukaiyama T, Kamio K, Kobayashi S, Takei H. Bull. Chem. Soc. Jpn. 1972; 45: 3723
  • 11 Mura AJ, Majetich G, Grieco PA, Cohen T. Tetrahedron Lett. 1975; 4437
  • 12 Fischer E, Jourdan F. Ber. Dtsch. Chem. Ges. 1883; 16: 2241
  • 13 Inman M, Moody CJ. Chem. Sci. 2013; 4: 29
  • 14 Gribble GW. J. Chem. Soc., Perkin Trans. 1 2000; 1045
  • 15 Humphrey GR, Kuethe JT. Chem. Rev. 2006; 106: 2875
  • 16 Robinson B. Chem. Rev. 1963; 63: 373
  • 17 Ashcroft CP, Hellier P, Pettman A, Watkinson S. Org. Proc. Res. Dev. 2011; 15: 98
  • 18 Campos KR, Woo JC. S, Lee S, Tillyer RD. Org. Lett. 2004; 6: 79
  • 19 Marais W, Holzapfel CW. Synth. Commun. 1998; 28: 3681
  • 20 Robertson CW, Woerpel KA. J. Am. Chem. Soc. 2002; 124: 11342
  • 21 Wagaw S, Yang BH, Buchwald SL. J. Am. Chem. Soc. 1998; 120: 6621
  • 22 Chae JB, Buchwald SL. J. Org. Chem. 2004; 69: 3336
  • 23 Lim Y.-K, Cho C.-G. Tetrahedron Lett. 2004; 45: 1857
  • 24 Arylhydrazines can be prepared from anilines via diazotization–reduction, from aryl halides via Buchwald couplings (see ref. 21), and from reactions of aryl Grignard reagents with azodicarboxylates. For reviews, see ref. 13. See also: Begtrup M, Rasmussen LK. Sci. Synth. 2007; 31: 1773
  • 25 Murakami Y, Watanabe T, Hagiwara T, Akiyama Y, Ishii H. Chem. Pharm. Bull. 1995; 43: 1281
  • 26 Ishii H, Takeda H, Hagiwara T, Sakamoto M, Kogusuri K. J. Chem. Soc., Perkin Trans. 1 1989; 2407
  • 27 Motati DR, Amaradhi R, Ganesh T. Bioorg. Med. Chem. 2020; 28: 115830
  • 28 Jeanty M, Blu J, Suzenet F, Guillaumet G. Org. Lett. 2009; 11: 5142
  • 29 Simmons BJ, Hoffmann M, Champagne PA, Picazo E, Yamakawa K, Morrill LA, Houk KN, Garg NK. J. Am. Chem. Soc. 2017; 139: 14833
  • 30 de Sá Alves FR, Barreiro EJ, Fraga CA. M. Mini-Rev. Med. Chem. 2009; 9: 782
  • 31 Schammel AW, Boal BW, Zu L, Mesganaw T, Garg NK. Tetrahedron 2010; 66: 4687
  • 32 Zu L, Boal BW, Garg NK. J. Am. Chem. Soc. 2011; 133: 8877
  • 33 Susick RB, Morrill LA, Picazo E, Garg NK. Synlett 2017; 1
  • 34 Liu C, Zhang W, Dai L.-X, You S.-L. Org. Lett. 2012; 14: 4525 ; corrigendum: Org. Lett. 2012, 14, 5168
  • 35 Li Y, Zhu S, Li J, Li A. J. Am. Chem. Soc. 2016; 138: 3982
  • 36 World Health Organization Model List of Essential Medicines – 22nd List. World Health Organization; Geneva: 2021
  • 37 Birkinshaw T, Bonnert R, Cook A, Rasul R, Sangee H, Teague S. PCT Pat. Appl WO 03/101981 A1, 2003
  • 38 Birkinshaw TN, Teague SJ, Beech C, Bonnert RV, Hill S, Patel A, Reakes S, Sanganee H, Dougall IG, Phillips TT, Salter S, Schmidt J, Arrowsmith EC, Carrillo JJ, Bell FM, Paine SW, Weaver R. Bioorg. Med. Chem. Lett. 2006; 16: 4287
  • 39 Xu Y, Lu H, Kennedy JP, Yan X, McAllister LA, Yamamoto N, Moss JA, Boldt GE, Jiang S, Janda KD. J. Comb. Chem. 2006; 8: 531
  • 40 Gottlieb HG, Kotlyar V, Nudelman A. J. Org. Chem. 1997; 62: 7512
  • 41 De E, Schüler P, Lovell S, Lohbeck J, Kullmann S, Rabinovich E, Sananes A, Heßling B, Hamon V, Papo N, Hess J, Tate EW, Gunkel N, Miller AK. J. Med. Chem. 2018; 61: 8859
  • 42 Buil MA, Calbet M, Castillo M, Castro M, Esteve C, Ferrer M, Forns P, González J, López S, Roberts RS, Sevilla S, Vidal B, Vidal L, Vilaseca P. Eur. J. Med. Chem. 2016; 113: 102
  • 43 Hering T, Hari DP, Konig B. J. Org. Chem. 2012; 77: 10347
  • 44 Krüll J, Hubert A, Nebel N, Prante O, Heinrich MR. Chem. Eur. J. 2017; 23: 16174
  • 45 Jena TK, Khan FA. Tetrahedron Lett. 2020; 61: 152583
  • 46 Jeanty M, Blu J, Suzenet F, Guillaumet G. J. Org. Chem. 2008; 73: 7390
  • 47 Mazéas D, Guillaumet G, Viaud M.-C. Heterocycles 1999; 50: 1065
  • 48 7-Chloro-4-formylquinoline (17) was prepared from 7-chloro-4-iodoquinoline using n-BuLi and DMF according to the procedure reported by Xu et al.39