Synthesis 2023; 55(02): 240-245
DOI: 10.1055/a-1896-8449
short review
Special Issue dedicated to Prof. Alain Krief

Chiral 1,4-Oxazino[4,3-a]indoles as a Challenging Scaffold: Syntheses and Properties

Aurélien Dupeux
,
This work was supported by the Centre National de la Recherche Scientifique (CNRS) and the University Côte d’Azur. We gratefully acknowledge the University Côte d’Azur for a grant to A. Dupeux.


Dedicated to Professor Alain Krief on the occasion of his 80th birthday

Abstract

In the last few decades, there has been an increasing interest in the development of new syntheses of oxazinoindoles, a tricyclic backbone bearing an indole core structure fused with a morpholine ring, in particular because these molecules have interesting bioactive properties, such as antidepressant, anti-inflammatory, or antitumor activity. There are a few reported racemic strategies for the synthesis of oxazinoindoles, but only four reports of enantioselective syntheses. This short review presents an overview of these enantioselective strategies as well as the evaluation of chiral oxazinoindoles for their bioactive properties.

1 Introduction

2 Racemic Syntheses and Evaluation of Chiral Oxazinoindoles after Separation

3 Enantioselective Catalytic Syntheses of Oxazinoindoles

4 Conclusion



Publication History

Received: 02 June 2022

Accepted after revision: 11 July 2022

Accepted Manuscript online:
11 July 2022

Article published online:
03 August 2022

© 2022. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Kochanowska-Karamyan AJ, Hamann MT. Chem. Rev. 2010; 110: 4489
    • 1b Vitaku E, Smith DT, Njardarson JT. J. Med. Chem. 2014; 57: 10257
    • 1c Kaushik N, Kaushik N, Attri P, Kumar N, Kim C, Verma A, Choi E. Molecules 2013; 18: 6620
    • 1d Mauger A, Jarret M, Kouklovsky C, Poupon E, Evanno L, Vincent G. Nat. Prod. Rep. 2021; 38: 1852
    • 1e Milcendeau P, Sabat N, Ferry A, Guinchard X. Org. Biomol. Chem. 2020; 18: 6006
    • 2a Demerson CA, Santroch G, Humber LG, Charest MP. J. Med. Chem. 1975; 18: 577
    • 2b Zimmerman WT. WO 9110668 A1, 1991
    • 2c Farina C, Gagliardi S, Misiano P, Celestini P, Zunino F. WO 2005/105213 A3, 2005
    • 3a Abbiati G, Canevari V, Caimi S, Rossi E. Tetrahedron Lett. 2005; 46: 7117
    • 3b Vandavasi JK, Hu W.-P, Senadi GC, Boominathan SS. K, Chen H.-Y, Wang J.-J. Eur. J. Org. Chem. 2014; 2014: 6219
    • 3c An J, Chang N.-J, Song L.-D, Jin Y.-Q, Ma Y, Chen J.-R, Xiao W.-J. Chem. Commun. 2011; 47: 1869
    • 3d Pecnard S, Hamze A, Bignon J, Prost B, Deroussent A, Gallego-Yerga L, Peláez R, Paik JY, Diederich M, Alami M, Provot O. Eur. J. Med. Chem. 2021; 223: 113656
    • 3e Palomba M, Vinti E, Marini F, Santi C, Bagnoli L. Tetrahedron 2016; 72: 7059
    • 3f Tang C.-Y, Tao Y, Wu X.-Y, Sha F. Adv. Synth. Catal. 2014; 356: 609
    • 3g Sathiyanaranan AM, Gharpure S. Chem. Commun. 2011; 47: 3625
    • 3h Zheng Y, Tice CM, Singh SB. Bioorg. Med. Chem. Lett. 2014; 24: 3673
    • 3i Wei L, Liu L, Zhang J. Org. Biomol. Chem. 2014; 12: 6869
    • 4a Fuchibe K, Kaneko T, Mori K, Akiyama T. Angew. Chem. Int. Ed. 2009; 48: 8070
    • 4b Niu S.-L, Hu J, He K, Chen Y.-C, Xiao Q. Org. Lett. 2019; 21: 4250
    • 4c Gogoi A, Guin S, Rout SK, Patel BK. Org. Lett. 2013; 15: 1802
    • 5a Chirucci M, Matteucci E, Cera G, Fabrizi G, Bandini M. Chem. Asian J. 2013; 8: 1776
    • 5b Naoe S, Saito T, Uchiyama M, Oishi S, Fujii N, Ohno H. Org. Lett. 2015; 17: 1774
    • 5c Naoe S, Yoshida Y, Oishi S, Fujii N, Ohno H. J. Org. Chem. 2016; 81: 5690
  • 6 Pecnard S, Hamze A, Pozzo J.-L, Alami M, Provot O. Eur. J. Med. Chem. 2021; 224: 113728
  • 7 Buzard DJ, Schrader TO, Zhu X, Lehmann J, Johnson B, Kasem M, Kim SH, Kawasaki A, Lopez L, Moody J, Han S, Gao Y, Edwards J, Barden J, Thatte J, Gatlin J, Jones RM. Bioorg. Med. Chem. Lett. 2015; 25: 659
  • 8 Chen J, Tao L.-X, Xiao W, Ji S.-S, Wang J.-R, Li X.-W, Zhang H.-Y, Guo Y.-W. Bioorg. Med. Chem. Lett. 2016; 26: 3765
  • 9 The neuroprotective effect of these compounds on Aβ25–35-induced neurotoxicity in SH-SY5Y cells. The cell viability in control was taken as 100%, and the average value of cell viability under Aβ25–35 exposure was 62.1 ± 2.2%. The positive control is epigallocatechin gallate.
  • 10 Bandini M, Bottoni A, Eichholzer A, Miscione GP, Stenta M. Chem. Eur. J. 2010; 16: 12462
  • 11 Biannic B, Aponick A. Eur. J. Org. Chem. 2011; 2011: 6605
  • 12 Chiarucci M, Mocci R, Syntrivanis L.-D, Cera G, Mazzanti A, Bandini M. Angew. Chem. Int. Ed. 2013; 52: 10850
  • 13 Lombardo VM, Thomas CD, Scheidt KA. Angew. Chem. Int. Ed. 2013; 52: 12910
    • 14a Kopecky DJ, Rychnovsky DJ. J. Am. Chem. Soc. 2001; 123: 8420
    • 14b Chio FK, Warne J, Gough D, Penny M, Green S, Coles SJ, Hursthouse MB, Jones P, Hassall L, McGuire TM, Dobbs AP. Tetrahedron 2011; 67: 5107
  • 15 Dupeux A, Michelet V. J. Org. Chem. 2021; 86: 17738
    • 16a Tomás-Mendivil E, Starck J, Ortuno J.-C, Michelet V. Org. Lett. 2015; 17: 6126
    • 16b Tomás-Mendivil E, Heinrich CF, Ortuno J.-C, Starck J, Michelet V. ACS Catal. 2017; 7: 380
    • 16c Mariaule G, Newsome G, Toullec PY, Belmont P, Michelet V. Org. Lett. 2014; 16: 4570
    • 16d Michalska M, Grudzień K, Małecki P, Grela K. Org. Lett. 2018; 20: 954
    • 16e Handa S, Slaughter LM. Angew. Chem. Int. Ed. 2012; 51: 2912