Synlett 2023; 34(11): 1270-1274
DOI: 10.1055/a-2012-0097
letter

NIS-Mediated Oxidation of Hydrazones: A Rapid Access to Fused Lactones and Tosylhydrazides

Ahmad Takallou
a   Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
,
Sulaiman Al-Shidhani
a   Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
,
Munir Al-Siyabi
a   Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
,
Akbar Mobaraki
b   Department of Chemistry, Kharazmi University, South Mofatteh Ave., Tehran 15719-14911, Iran
,
Muhammad U. Anwar
a   Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
,
Ahmed Al-Harrasi
a   Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Postal Code 616, Birkat Al Mauz, Nizwa, Sultanate of Oman
› Author Affiliations
Financial support from the Sultanate of Oman Research Council (TRC) (grant no. BFP/RGP/EI/22/168) and the University of Nizwa is gratefully acknowledged.


Abstract

A tandem one-pot strategy for the synthesis of 4-iodo-3-aryl(alkyl)-1H-pyrano[4,3-b]quinolin-1-ones and (E)-3-(iodo(phenyl)methylene)isobenzofuran-1-(3H)-ones from 2-alkynylhydrazones has been developed through oxidation and regioselective 6-endo- and 5-exo-iodocyclization pathways by using NIS as an iodinating reagent. This approach tolerates a variety of in situ generated alkynyl-containing tosylhydrazones and affords the corresponding products in high yields. The protocol has also been applied for the synthesis of different derivatives in good to excellent yields.

Supporting Information



Publication History

Received: 09 November 2022

Accepted after revision: 12 January 2023

Accepted Manuscript online:
12 January 2023

Article published online:
20 February 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Zhu C, Wang R, Falck JR. Chem. Asian J. 2012; 7: 1502
    • 1b Zhu D.-Y, Fang L, Han H, Wang Y, Xia J.-B. Org. Lett. 2017; 19: 4259
    • 1c Zhang Z, Ju T, Ye J.-H, Yu D.-G. Synlett 2017; 28: 741
    • 1d Singh J, Nickel GA, Cai Y, Jones DD, Nelson TJ, Small JE, Castle SL. Org. Lett. 2021; 23: 3970
    • 1e Yu W, Zhang X, Liu C, Zhang Y, Gu X, Liao J, Zhang Z, Wei W, Li G, Liang T. J. Org. Chem. 2022; 87: 12424
    • 1f Kantak AA, Potavathri S, Barham RA, Romano KM, DeBoef B. J. Am. Chem. Soc. 2011; 133: 19960
    • 1g Kunchur HS, Balakrishna MS. Inorg. Chem. 2022; 61: 857
    • 1h Devlin R, Jones DJ, McGlacken GP. Org. Lett. 2020; 22: 5223
    • 1i Okuma K, Itoyama R, Sou A, Nagahoraa N, Shioj K. Chem. Commun. 2012; 48: 11145
    • 1j Tang T.-M, Liu M, Wu H, Gou T, Hu X, Wang B.-Q, Hu P, Song F, Huang G. Org. Chem. Front. 2021; 8: 3867
    • 2a Gore S, Baskaran S, König B. Org. Lett. 2012; 14: 4568
    • 2b Dočekal V, Vopálenská A, Měrka P, Konečná K, Jand’ourek O, Pour M, Císařová I, Veselý J. J. Org. Chem. 2021; 86: 12623
    • 2c Panther J, Müller TJ. J. Synthesis 2016; 48: 974
    • 2d Park I.-K, Suh S.-E, Lim B.-Y, Cho C.-G. Org. Lett. 2009; 11: 5454
    • 2e Dai X.-J, Li C.-J. J. Am. Chem. Soc. 2016; 138: 5344
    • 2f Cranwell PB, Russell AT, Smith CD. Synlett 2016; 27: 131
    • 2g Ojha DP, Prabhu KR. Org. Lett. 2015; 17: 18
    • 4a Ding Q, Chen Z, Yu X, Peng Y, Wu J. Tetrahedron Lett. 2009; 50: 340
    • 4b Yao H.-F, Wang D.-L, Li F.-H, Wu B, Cai Z.-J, Ji S.-J. Org. Biomol. Chem. 2020; 18: 7577
    • 4c Jiang L, Yu X, Fang B, Wu J. Org. Biomol. Chem. 2012; 10: 8102
    • 4d Li S, Luo Y, Wu J. Org. Lett. 2011; 13: 4312
    • 4e Özer MS, Menges N, Keskin S, Şahin E, Balci M. Org. Lett. 2016; 18: 408
  • 5 Chen Z, Ding Q, Yu X, Wu J. Adv. Synth. Catal. 2009; 351: 1692
    • 6a Verma AK, Rustagi V, Aggarwal T, Singh AP. J. Org. Chem. 2010; 75: 7691
    • 6b Takallou A, Al-Shidhani S, Anwar MU, Al-Harrasi A. Synthesis 2023; 55: 489
    • 6c Reddy MB, Peri R, Bhagavathiachari M, Anandhan R. Org. Biomol. Chem. 2021; 19: 6792
    • 6d Wang R.-X, Yuan S.-T, Liu J.-B, Wu J, Qiu G. Org. Biomol. Chem. 2018; 16: 4501
    • 6e Verma AK, Aggarwal T, Rustagia V, Larock RC. Chem. Commun. 2010; 46: 4064
    • 6f Zhu Y, Shen Z. Adv. Synth. Catal. 2017; 359: 3515
    • 6g Biagetti M, Bellina F, Carpita A, Stabile P, Rossi R. Tetrahedron 2002; 58: 5023
    • 6h Wang Y.-H, Liu J.-B, Ouyang B, Zhou H, Qiu G. Tetrahedron 2018; 74: 4429
    • 7a Ye S, Wang H, Wu J. Eur. J. Org. Chem. 2010; 6436
    • 7b Xiao Q, Ye S, Wu J. Org. Lett. 2012; 14: 3430
    • 7c Nikbakht A, Balalaie S, Breit B. Org. Lett. 2019; 21: 7645
    • 7d Ren H, Luo Y, Ye S, Wu J. Org. Lett. 2011; 13: 2552
    • 7e Ye S, Gao K, Wu J. Adv. Synth. Catal. 2010; 352: 1746
    • 7f Araujo DR, Goulart HA, Barcellos AM, Cargnelutti R, Lenardão EJ, Perin G. J. Org. Chem. 2020; 86: 1721
    • 7g Han D, He Q, Fan R. Angew. Chem. Int. Ed. 2015; 54: 14013
    • 7h He L, Nie H, Qiu G, Gao Y, Wu J. Org. Biomol. Chem. 2014; 12: 9045
  • 8 4-Iodo-3-aryl(alkyl)-1H-pyrano[4,3-b]quinolin-1-ones: A mixture of 2-alkynylarylaldehydes (1.0 mmol, 1.0 equiv) and TsNHNH2 (1.0 mmol, 1.0 equiv) in DMF (2 mL) was stirred at 75 °C for 20 min. The mixture was then cooled to –5 °C in an ice/salt bath. Subsequently, NIS (2.2 mmol, 2.20 equiv) was added in portions over 5 min, and the mixture was slowly warmed to room temperature. The progress of reaction was monitored by TLC. After completion of the reaction, a solution of sodium thiosulfate was added to the reaction mixture to neutralize excess NIS. Then, H2O (5 mL) was added, the resulting mixture was extracted with ethyl acetate (3 × 5 mL), and the organic layer was washed with brine, dried over MgSO4 and concentrated in vacuo. This was followed by purification over silica gel, which provided the corresponding product. 4-Iodo-3-phenyl-1H-pyrano[4,3-b]quinolin-1-one (2a): Yellow oil; yield: 327 mg (82%). IR (KBr): 3150, 1711, 1526, 1118, 756 cm–1. 1H NMR (600 MHz, CDCl3): δ = 9.16 (s, 1 H), 8.32–8.30 (m, 1 H), 8.08–8.06 (m, 1 H), 7.97–7.90 (m, 4 H), 7.77–7.73 (m, 2 H), 7.70–7.68 (m, 1 H). 13C NMR (151 MHz, CDCl3): δ = 161.3, 156.0, 151.7, 150.1, 140.9, 133.8, 130.5, 129.7, 129.1, 128.1, 127.6, 125.2, 125.1, 114.2, 82.8. HRMS (ESI): m/z calcd for C18H10INO2 [M + H]+: 399.9834; found: 399.9831.