Synlett 2023; 34(12): 1385-1390
DOI: 10.1055/a-2039-9942
cluster
Special Issue Honoring Masahiro Murakami’s Contributions to Science

Visible-Light Photocatalytic Barbier-Type Reaction of Aziridines and Azetidines with Nonactivated Aldehydes

Quan Qu
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. of China
,
Lin Chen
b   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, ­Sichuan University, #29 Wangjiang Road, Chengdu 610064, P. R. of China
,
Yu Deng
b   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, ­Sichuan University, #29 Wangjiang Road, Chengdu 610064, P. R. of China
,
Yong-Yuan Gui
a   College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, P. R. of China
,
Da-Gang Yu
b   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, ­Sichuan University, #29 Wangjiang Road, Chengdu 610064, P. R. of China
b   Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, ­Sichuan University, #29 Wangjiang Road, Chengdu 610064, P. R. of China
› Author Affiliations
Financial support was provided by the National Natural Science Foundation of China (22101192), Sichuan Normal University (024-341914001), the Opening Foundation of the Key Laboratory of Asymmetric Synthesis and Chirotechnology of Sichuan Province (2021KFKT03), and the Fundamental Research Funds for the Central Universities.


Dedicated to Prof. Dr. Masahiro Murakami for his great contributions to science.

Abstract

Barbier-type reactions are a classic group of reactions for carbon–carbon bond formation; however, their common use of stoichiometric metals restricts their widespread application. Considering the ready availability and diversity of cyclic amines, we report a visible-light photocatalytic Barbier-type reaction of aziridines and azetidines with nonactivated aldehydes. A series of important γ- and δ-amino alcohols were synthesized in the presence of amines as electron donors. Moreover, this transition-metal-free protocol displays mild reaction conditions, broad functional-group tolerance, and a wide substrate scope. Mechanistic investigations indicated that carbon radicals and carbanions might be generated as key intermediates.

Supporting Information



Publication History

Received: 25 January 2023

Accepted after revision: 21 February 2023

Accepted Manuscript online:
21 February 2023

Article published online:
08 March 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References and Notes

    • 1a Metal Catalyzed Reductive C–C Bond Formation: A Departure from Preformed Organometallic Reagents. Krische M. J; Springer: Berlin: 2007
    • 1b Brahmachari G. RSC Adv. 2016; 6: 64676
    • 1c Yi L, Ji T, Chen K.-Q, Chen X.-Y, Rueping M. CCS Chem. 2022; 4: 9
    • 2a Barbier P. C. R. Hebd. Seances Acad. Sci. 1899; 128: 110
    • 2b Nokami J, Otera J, Sudo T, Okawara R. Organometallics 1983; 2: 191
    • 2c Yamamoto Y, Asao N. Chem. Rev. 1993; 93: 2207
    • 2d Li C.-J. Tetrahedron 1996; 52: 5643
    • 2e Li C.-J, Zhang W.-C. J. Am. Chem. Soc. 1998; 120: 9102
    • 2f Keinicke L, Fristrup P, Norrby P.-O, Madsen R. J. Am. Chem. Soc. 2005; 127: 15756
    • 2g Frimpong K, Wzorek J, Lawlor C, Spencer K, Mitzel T. J. Org. Chem. 2009; 74: 5861

      For selected reviews, see:
    • 3a Ravelli D, Protti S, Fagnoni M. Chem. Rev. 2016; 116: 9850
    • 3b Pitzer L, Schwarz JL, Glorius F. Chem. Sci. 2019; 10: 8285
    • 3c Wiles RJ, Molander GA. Isr. J. Chem. 2020; 60: 281
    • 3d Donabauer K, König B. Acc. Chem. Res. 2021; 54: 242
    • 3e Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Acc. Chem. Res. 2021; 54: 2518
    • 3f Ran C.-K, Xiao H.-Z, Liao L.-L, Ju T, Zhang W, Yu D.-G. Natl. Sci. Open 2022; 2: 20220024 ; DOI: 10.1360/nso/20220024
    • 3g Dou D, Wang T.-M, Li S.-F, Fang L.-J, Zhai H.-B, Cheng B. Youji Huaxue 2022; 42: 4257 ; For selected examples, see
    • 3h Yatham VR, Shen Y, Martin R. Angew. Chem. Int. Ed. 2017; 56: 10915
    • 3i Phelan JP, Lang SB, Compton JS, Kelly CB, Dykstra R, Gutierrez O, Molander GA. J. Am. Chem. Soc. 2018; 140: 8037
    • 3j Ju T, Fu Q, Ye J.-H, Zhang Z, Liao L.-L, Yan S.-S, Tian X.-Y, Luo S.-P, Li J, Yu D.-G. Angew. Chem. Int. Ed. 2018; 57: 13897
    • 3k Fu Q, Bo Z.-Y, Ye J.-H, Ju T, Huang H, Liao L.-L, Yu D.-G. Nat. Commun. 2019; 10: 3592
    • 3l Meng Q.-YSchirmer T. E, Berger AL, Donabauer K, König B. J. Am. Chem. Soc. 2019; 141: 11393
    • 3m Zhou W.-J, Wang Z.-H, Liao L.-L, Jiang Y.-X, Cao K.-G, Ju T, Li Y, Cao G.-M, Yu D.-G. Nat. Commun. 2020; 11: 3263
    • 3n Song L, Fu D.-M, Chen L, Jiang Y.-X, Ye J.-H, Zhu L, Lan Y, Fu Q, Yu D.-G. Angew. Chem. Int. Ed. 2020; 59: 21121
    • 3o Jiang Y.-X, Chen L, Ran C.-K, Song L, Zhang W, Liao L.-L, Yu D.-G. ChemSusChem 2020; 13: 6312
    • 3p Liao L.-L, Cao G.-M, Jiang Y.-X, Jin X.-H, Hu X.-L, Chruma JJ, Sun G.-Q, Gui Y.-Y, Yu D.-G. J. Am. Chem. Soc. 2021; 143: 2812
    • 3q Niu Y.-N, Jin X.-H, Liao L.-L, Huang H, Yu B, Yu Y.-M, Yu D.-G. Sci. China Chem. 2021; 64: 1164
    • 3r Cao G.-M, Hu X.-L, Liao L.-L, Yan S.-S, Song L, Chruma JJ, Gong L, Yu D.-G. Nat. Commun. 2021; 12: 3306
    • 3s Ju T, Zhou Y.-Q, Cao K.-G, Fu Q, Ye J.-H, Sun G.-Q, Liu X.-F, Chen L, Liao L.-L, Yu D.-G. Nat. Catal. 2021; 4: 304
    • 3t Yan S.-S, Liu S.-H, Chen L, Bo Z.-Y, Jing K, Gao T.-Y, Yu B, Lan Y, Luo S.-P, Yu D.-G. Chem 2021; 7: 3099
    • 3u Murugesan K, Donabauer K, Narobe R, Derdau V, Bauer A, König B. ACS Catal. 2022; 12: 3974
    • 3v Jing K, Wei M.-K, Yan S.-S, Liao L.-L, Niu Y.-N, Luo S.-P, Yu B, Yu D.-G. Chin. J. Catal. 2022; 43: 1667
    • 3w Ran C.-K, Niu Y.-N, Song L, Wei M.-K, Cao Y.-F, Luo S.-P, Yu Y.-M, Liao L.-L, Yu D.-G. ACS Catal. 2022; 12: 18
    • 3x Bo Z.-Y, Yan S.-S, Gao T.-Y, Song L, Ran C.-K, He Y, Zhang W, Cao G.-M, Yu D.-G. Chin. J. Catal. 2022; 43: 2388
    • 4a Liao L.-L, Cao G.-M, Ye J.-H, Sun G.-Q, Zhou W.-J, Gui Y.-Y, Yan S.-S, Shen G, Yu D.-G. J. Am. Chem. Soc. 2018; 140: 17338
    • 4b Berger AL, Donabauer K, König B. Chem. Sci. 2018; 9: 7230
    • 4c Berger AL, Donabauer K, König B. Chem. Sci. 2019; 10: 10991
    • 4d Wang S, Cheng B.-Y, Sršen M, König B. J. Am. Chem. Soc. 2020; 142: 7524
    • 4e Zhang L, Chu Y, Ma P, Zhao S, Li Q, Chen B, Hong X, Sun J. Org. Biomol. Chem. 2020; 18: 1073
    • 5a Couty F, Evano G. Synlett 2009; 3053
    • 5b Taylor RD, MacCoss M, Lawson AD. G. J. Med. Chem. 2014; 57: 5845
    • 5c Singh GS. Mini-Rev. Med. Chem. 2016; 16: 892
    • 5d Mehra V, Lumb I, Anand A, Kumar V. RSC Adv. 2017; 7: 45763
    • 5e Blakemore DC, Castro L, Churcher I, Rees DC, Thomas AW, Wilson DM, Wood A. Nat. Chem. 2018; 10: 383
    • 5f Fu Z, Xu J. Huaxue Jinzhan 2018; 30: 1047
    • 6a Singh GS. Adv. Heterocycl. Chem. 2019; 129: 245
    • 6b Singh GS. Adv. Heterocycl. Chem. 2020; 130: 1
    • 6c Mughal H, Szostak M. Org. Biomol. Chem. 2021; 19: 3274
    • 7a Stanković S, D’hooghe M, Catak S, Eum H, Waroquier M, Van Speybroeck V, De Kimpe N, Ha H.-J. Chem. Soc. Rev. 2012; 41: 643
    • 7b Chen X, Xu J. Huaxue Jinzhan 2017; 29: 181
    • 7c Chu X, Chang H, Gao W, Wei W, Li X. Youji Huaxue 2017; 37: 2569
    • 7d Smolobochkin AV, Gazizov AS, Burilov AR, Pudovik MA, Sinyashin OG. Russ. Chem. Rev. 2019; 88: 1104
    • 7e Huo M, Bian Y, Yu C. Sci. China Chem. 2021; 64: 1778
    • 7f Du Q, Zhang L, Gao F, Wang L, Zhang W. Youji Huaxue 2022; 42: 3240
  • 8 Wang C. Synthesis 2017; 49: 5307
    • 9a Almena J, Foubelo F, Yus M. Tetrahedron 1994; 50: 5775
    • 9b Almena J, Foubelo F, Yus M. J. Org. Chem. 1994; 59: 3210
    • 9c Ohno H, Hamaguchi H, Tanaka T. Org. Lett. 2000; 2: 2161
    • 9d Takemoto Y, Anzai M, Yanada R, Fujii N, Ohno H, Ibuka T. Tetrahedron Lett. 2001; 42: 1725
    • 9e Shimizu M, Nishiura S, Hachiya I. Heterocycles 2007; 74: 177
    • 9f Woods BP, Orlandi M, Huang C.-Y, Sigman MS, Doyle AG. J. Am. Chem. Soc. 2017; 139: 5688
    • 9g Zhang Y.-Q, Vogelsang E, Qu Z.-W, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2017; 56: 12654
    • 9h Davies J, Janssen-Müller D, Zimin DP, Day CS, Yanagi T, Elfert J, Martin R. J. Am. Chem. Soc. 2021; 143: 4949
    • 10a Larraufie M.-H, Pellet R, Fensterbank L, Goddard J.-P, Lacôte E, Malacria M, Ollivier C. Angew. Chem. Int. Ed. 2011; 50: 4463
    • 10b Steiman TJ, Liu J, Mengiste A, Doyle AG. J. Am. Chem. Soc. 2020; 142: 7598
    • 10c Xu C.-H, Li J.-H, Xiang J.-N, Deng W. Org. Lett. 2021; 23: 3696
    • 10d Chen L, Qu Q, Ran C.-K, Wang W, Zhang W, He Y, Liao L.-L, Ye J.-H, Yu D.-G. Angew. Chem. Int. Ed. 2023; 62: e202217918
    • 11a Foley VM, McSweeney CM, Eccles KS, Lawrence SE, McGlacken GP. Org. Lett. 2015; 17: 5642
    • 11b Tejo C, See YF. A, Mathiew M, Chan PW. H. Org. Biomol. Chem. 2016; 14: 844
    • 11c Zhang Y.-Q, Bohle F, Bleith R, Schnakenburg G, Grimme S, Gansäuer A. Angew. Chem. Int. Ed. 2018; 57: 13528
    • 11d Wang X.-M, Liu Y.-W, Ma R.-J, Si C.-M, Wei B.-G. J. Org. Chem. 2019; 84: 11261
    • 11e Ichikawa S, Buchwald SL. Org. Lett. 2019; 21: 8736
    • 12a Ishitani O, Pac C, Sakurai H. J. Org. Chem. 1983; 48: 2941
    • 12b Nakajima M, Fava E, Loescher S, Jiang Z, Rueping M. Angew. Chem. Int. Ed. 2015; 54: 8828
    • 12c Annibaletto J, Jacob C, Theunissen C. Org. Lett. 2022; 24: 4170
    • 13a Ouyang K, Hao W, Zhang W.-X, Xi Z. Chem. Rev. 2015; 115: 12045
    • 13b Wang Q, Su Y, Li L, Huang H. Chem. Soc. Rev. 2016; 45: 1257
    • 13c Wang Y, Li F, Zeng Q. Acta Chim. Sin. (Engl. Ed.) 2022; 80: 386
    • 14a Bamou FZ, Le TM, Volford B, Szekeres A, Szakonyi Z. Molecules 2020; 25: 21
    • 14b Yang D, Xie C.-X, Wu X.-T, Fei L.-R, Feng L, Ma C. J. Org. Chem. 2020; 85: 14905
    • 14c You H.-Y, Vegi SR, Lagishetti C, Chen S, Reddy RS, Yang XH, Guo J, Wang CH, He Y. J. Org. Chem. 2018; 83: 4119
    • 14d Ma R, Young J, Promontorio R, Dannheim FM, Pattillo CC, White MC. J. Am. Chem. Soc. 2019; 141: 9468
    • 14e Reddy RS, Zheng S, Lagishetti C, Youa H, He Y. RSC Adv. 2016; 6: 68199
    • 14f Heravi MM, Lashaki TB, Fattahi B, Zadsirjan V. RSC Adv. 2018; 8: 6634
    • 14g Pomplun S, Shugrue CR, Schmitt AM, Schissel CK, Farquhar CE, Pentelute BL. Angew. Chem. Int. Ed. 2020; 59: 11566
    • 14h Reddy RS, Lagishetti C, Kiran IN. C, You H, He Y. Org. Lett. 2016; 18: 3818
    • 14i Cossy J, Pardo DG, Dumas C, Mirguet O, Déchamps I, Métro T.-X, Burger B, Roudeau R, Appenzeller J, Cochi A. Chirality 2009; 21: 850
    • 14j Chowdari NS, Ramachary DB, Barbas CF. Org. Lett. 2003; 5: 1685
    • 14k Raji M, Le TM, Csámpai A, Nagy V, Zupkó I, Szakonyi Z. Synthesis 2022; 54: 3831
    • 14l Mao P, Yang L, Xiao Y, Yuan J, Mai W, Gao J, Zhang X. Youji Huaxue 2019; 39: 443
    • 14m Inuki S, Sato K, Fujimoto Y. Tetrahedron Lett. 2015; 56: 5787
    • 14n Lagishetti C, Banne S, You H, Tang M, Guo J, Qi N, He Y. Org. Lett. 2019; 21: 5301
    • 14o Shinichi I, Yoshiki S, Koichi I, Akira H, Seiichi N. Bull. Chem. Soc. Jpn. 1987; 60: 395
    • 14p Zhou Z, Tan Y, Shen X. Sci. China Chem. 2021; 64: 452
  • 15 Sterling AJ, Smith RC, Anderson EA, Duarte F. Chem. Rxiv. 2022; preprint; DOI: DOI: 10.26434/chemrxiv2021-n0xm9-v2.
  • 16 tert-Butyl (3-Biphenyl-4-yl-4-hydroxy-6-phenylhexyl)carbamate ( 3aa): Typical ProcedureAn oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the 1a (0.2 mmol, 61.9 mg, 1 equiv) and 3DPAFIPN (0.004 mmol, 2.6 mg, 2 mol%). The Schlenk tube was then transferred to a glovebox where it was charged with PivOK (0.2 mmol, 28 mg, 1 equiv). The tube was taken out of the glovebox, connected to a vacuum line, and evacuated and back-filled with N2 three times. 2a (0.4 mmol, 53.7 mg, 2 equiv), DIPEA (0.4 mmol, 51.7 mg, 2 equiv), and DMA (2 mL) were then added under flowing N2. Finally, the mixture in the sealed tube was placed 1 cm from a 30 W blue LED lamp and stirred at rt (25 °C) for 36 h. The reaction was quenched with 2 N aq HCl (2 mL), and the mixture was extracted with EtOAc. The extracts were concentrated in vacuo and the residue was purified by flash chromatography [silica gel, PE–EtOAc (10:1 to 3:1)] to give a light yellow viscous liquid; yield: 73 mg (82%). 1H NMR (400 MHz, CDCl3, mixture of two diastereomers): δ = 7.61–7.48 (m, 4 H), 7.46–7.38 (m, 2 H), 7.35–7.12 (m, 7 H), 7.11–7.06 (m, 1 H), 4.57–4.44 (m, 1 H), 3.84–3.69 (m, 1 H), 3.15–2.88 (m, 2 H), 2.87–2.76 (m, 1 H), 2.73–2.55 (m, 2 H), 2.21–2.09 (m, 1 H), 1.98–1.80 (m, 2 H), 1.76–1.53 (m, 2 H), 1.41 (s, 9 H). 13C NMR (101 MHz, CDCl3, mixture of two diastereomers): δ = 156.2, 156.1, 142.14, 142.06, 140.93, 140.88, 140.86, 140.0, 139.7, 139.5, 129.4, 128.9, 128.8, 128.6, 128.54, 128.52, 128.47, 127.48, 127.47, 127.34, 127.31, 127.11, 127.09, 126.0, 125.9, 79.3, 75.1, 74.2, 49.9, 49.3, 39.2, 37.1, 36.8, 32.6, 32.4, 32.3, 32.0, 28.5. HRMS (ESI+): m/z [M + Na]+ calcd for C29H35NNaO3: 468.2509; found: 468.2506.