Synthesis 2023; 55(22): 3725-3736
DOI: 10.1055/a-2085-5934
short review

Synthetic Studies toward the Myrioneuron Alkaloids

,
This work was financially supported by UT Southwestern through the W. W. Caruth Jr. Scholarship, the Welch Foundation (I-2045), and the National Institutes of Health (T32GM127216 to J.M.A.). We also acknowledge funding via an UT Southwestern–American Cancer Society Institutional Research Grant (IRG-21-142-16) and Cancer Center Support Grant (P30CA142543).


Abstract

The Myrioneuron alkaloids are a relatively small family of plant-derived alkaloids that present an intriguing array of structural intricacy and biological properties. As such, these natural products have drawn interest from the synthetic community, resulting in creative total syntheses of several family members. This review showcases recent synthetic efforts towards these polycyclic alkaloids.

1 Introduction

1.1 Biological Activity

1.2 Proposed Biosynthesis

2 Synthetic Studies toward the Myrioneuron Alkaloids

2.1 Total Synthesis of Myrioxazines A and B

2.2 Total Synthesis of Myrionine, Myrionidine, and Schoberine

2.3 Total Synthesis of Myrifabrals A and B

2.4 Total Synthesis of Myrioneurinol

3 Conclusions and Outlook



Publication History

Received: 24 March 2023

Accepted after revision: 03 May 2023

Accepted Manuscript online:
03 May 2023

Article published online:
12 June 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References


    • For a review, see:
    • 1a Gravel E, Poupon E. Nat. Prod. Rep. 2010; 27: 32
    • 1b For an account of biomimetic investigations related to the Nitraria and Myrioneuron families, see: Poupon E, Gravel E. Chem. Eur. J. 2015; 21: 10604

      For isolations, see:
    • 2a Pham VC, Jossang A, Chiaroni A, Sévenet T, Bodo B. Tetrahedron Lett. 2002; 43: 7565
    • 2b Pham VC, Jossang A, Chiaroni A, Sévenet T, Nguyen VH, Bodo B. Org. Lett. 2007; 9: 3531
    • 2c Pham VC, Jossang A, Sévenet T, Nguyen VH, Bodo B. Tetrahedron 2007; 63: 11244
    • 2d Pham VC, Jossang A, Sévenet T, Nguyen VH, Bodo B. J. Org. Chem. 2007; 72: 9826
    • 2e Pham VC, Jossang A, Grellier P, Sévenet T, Nguyen VH, Bodo B. J. Org. Chem. 2008; 73: 7565
    • 2f Pham VC, Jossang A, Sévenet T, Nguyen VH, Bodo B. Eur. J. Org. Chem. 2009; 1412
    • 2g Huang S.-D, Zhang Y, Cao M.-M, Di Y.-T, Tang G.-H, Peng Z.-G, Jiang J.-D, He H.-P, Hao X.-J. Org. Lett. 2013; 15: 590
    • 2h Cao M.-M, Huang S.-D, Di Y.-T, Yuan C.-M, Zuo G.-Y, Gu Y.-C, Zhang Y, Hao X.-J. Org. Lett. 2014; 16: 528
    • 2i Cao M.-M, Zhang Y, Li X.-H, Peng Z.-G, Jiang J.-D, Gu Y.-C, Di Y.-T, Li X.-N, Chen D.-Z, Xia C.-F, He H.-P, Li S.-L, Hao X.-J. J. Org. Chem. 2014; 79: 7945
    • 2j Cao M.-M, Zhang Y, Huang S.-D, Di Y.-T, Peng Z.-G, Jiang J.-D, Yuan C.-M, Chen D.-Z, Li S.-L, He H.-P, Hao X.-J. J. Nat. Prod. 2015; 78: 2609
    • 2k Cao M.-M, Zhang Y, Peng Z.-G, Jiang J.-D, Gao Y.-J, Hao X.-J. RSC Adv. 2016; 6: 10180
    • 2l Li X.-H, Zhang Y, Zhang J.-H, Li X.-N, Cao M.-M, Di Y.-T, Peng Z.-G, Jiang J.-D, Hao X.-J. J. Nat. Prod. 2016; 79: 1203
    • 2m Zhang J.-H, Guo J.-J, Yuan Y.-X, Fu Y.-H, Gu Y.-C, Zhang Y, Chen D.-Z, Li S.-L, Di Y.-T, Hao X.-J. Fitoterapia 2016; 112: 217
    • 2n Cao M.-M, Zhang Y, Huang S.-D, Peng Z.-G, Jiang J.-D, Hao X.-J. Tetrahedron Lett. 2016; 57: 4021
    • 2o Cao M.-M, Zhang J.-H, Zhang Y, Peng Z.-G, Jiang J.-D, Hao X.-J. Tetrahedron Lett. 2016; 57: 5632
    • 2p Zhang J.-H, Cao M, Zhang Y, Li X.-H, Gu Y.-C, Li X.-N, Di Y.-T, Hao X.-J. RSC Adv. 2022; 12: 28147
    • 2q Li X.-H, Zhang J.-H, Zhang Y, Di Y.-T, Gu Y.-C, Cao M, Hao X.-J. Phytochem. Lett. 2023; 53: 175
  • 3 Martins D, Nunez CV. Molecules 2015; 20: 13422
    • 4a Ibragimov AA, Novgorodova NYu, Aripov KhN. Chem. Nat. Compd. 1977; 13: 71
    • 4b Tulyaganov TS. Chem. Nat. Compd. 1993; 29: 31
    • 4c Tulyaganov TS, Allaberdiev FKh. Chem. Nat. Compd. 2003; 39: 292
    • 5a Wanner MJ, Koomen GJ. Stereoselectivity in Synthesis and Biosynthesis of Lupine and Nitraria Alkaloids. In Studies in Natural Products Chemistry, Vol. 14. Atta-ur-Rahman Elsevier; Amsterdam: 1994: 731-768
    • 5b Wanner MJ, Koomen GJ. Pure Appl. Chem. 1994; 66: 2239
    • 6a Burrell AJ. M, Coldham I, Watson L, Oram N, Pilgram CD, Martin NG. J. Org. Chem. 2009; 74: 2290
    • 6b Burrell AJ. M, Coldham I, Oram N. Org. Lett. 2009; 11: 1515
    • 6c Coldham I, Burrell AJ. M, Watson L, Oram N, Martin NG. Heterocycles 2012; 84: 597
  • 7 For an additional formal synthesis of several Myrioneuron alkaloids through the asymmetric preparation of 55, see: Amat M, Ghirardi E, Navío L, Griera R, Llor N, Molins E, Bosch J. Chem. Eur. J. 2013; 19: 16044
  • 8 Gil G. Tetrahedron Lett. 1984; 25: 3805
  • 9 Song D, Wang Z, Mei R, Zhang W, Ma D, Xu D, Xie X, She X, She X. Org. Lett. 2016; 18: 669
  • 10 Fulton TJ, Chen AY, Stoltz BM, Bartberger MD. Chem. Sci. 2020; 11: 10802
  • 11 Behenna DC, Stoltz BM. J. Am. Chem. Soc. 2004; 126: 15044
    • 12a Nocket AJ, Weinreb SM. Angew. Chem. Int. Ed. 2014; 53: 14162
    • 12b Nocket AJ, Feng Y, Weinreb SM. J. Org. Chem. 2015; 80: 1116
  • 13 Li P, Majireck MM, Witek JA, Weinreb SM. Tetrahedron Lett. 2010; 51: 2032
  • 14 Zhang N, Jiang H, Ma Z. Angew. Chem. Int. Ed. 2022; 61: e202200085
  • 15 Aquilina JM, Smith MW. J. Am. Chem. Soc. 2022; 144: 11088
  • 16 Baalouch M, De Mesmaeker A, Beaudegnies R. Tetrahedron Lett. 2013; 54: 557
  • 17 Xiao X, Bai D. Synlett 2001; 535
  • 18 Nicolaou KC, Adsool VA, Hale CR. H. Org. Lett. 2010; 12: 1552
  • 19 Qu Y, Wang Z, Zhang Z, Zhang W, Huang J, Yang Z. J. Am. Chem. Soc. 2020; 142: 6511
  • 20 One additional total synthesis of (±)-3, as well as (–)-5 and formal syntheses via Bodo’s intermediate 70, has been described in a thesis from the Snyder group, see: Shen M. PhD Thesis . University of Chicago; USA: 2019