Synlett
DOI: 10.1055/a-2158-8820
account

Stereogenic π-Conjugated Macrocycles: Synthesis, Structure, and Chiroptical Properties Including Circularly Polarized Luminescence

Masashi Hasegawa
,
Yasuhiro Mazaki
This work was financially supported by the Japan Society for the Promotion of Science (JSPS KAKENHI grants JP21K05043 and JP22K05070) and the Core Research for Evolutional Science and Technology (JST, CREST grant JPMJCR2001).


Dedicated to the memory of Professor Masahiko Iyoda, who passed away on September 21, 2023.

Abstract

Highly symmetrical and aesthetically pleasing molecules have attracted the attention of organic chemists. We synthesized new highly symmetric stereogenic π-conjugated macrocycles with planar or axial chirality. Macrocyclic oligomers synthesized by Yamamoto coupling or Suzuki–Miyaura cross-coupling from the π-unit containing chirality. These cyclization reactions gave multiple oligomers in relatively high yields. We then elucidated their structures and investigated their chiroptical properties, including circular dichroism (CD) and circularly polarized luminescence (CPL). Because of the selection rule for rigid and symmetric structures, these macrocycles exhibit a high dissymmetry factor (g abs or g lum) for circularly polarized light in CD or CPL. Several rigid cyclic compounds retain a highly symmetric structure in the excited state and exhibit higher g lum values than common chiral organic compounds. This Account provides a brief background regarding chiroptical properties, followed by a summary of the various macrocycles synthesized in this study. We are glad if this Account will be a source of ideas not only for chemists working with π-conjugated compounds, but also for synthetic chemists working with chiral compounds, especially those engaged in asymmetric synthesis.

1 Introduction

2 Brief Description of Chiroptical Properties

3 Stereogenic Macrocycle Based on [2.2]Paracyclophane

3.1 Stereogenic Double-decker Oligothiophene

3.2 Stereogenic Biselenophene Macrocycle

3.3 Helical Oligophenylene Linked with [2.2]Paracyclophane

4 Stereogenic Macrocycle Based on Binaphthyl

4.1 Cyclic Oligomer of Chiral Binaphthyl

4.2 Doubly Twisted Binaphthyl Dimer

4.3 Cyclic Oligomer of Binaphthyl Extended with Paraphenylene

4.4 Curved Helical Paraphenylene Anchoring Chiral Binaphthyl

4.5 Binaphthyl-Hinged [5]-Helicene

5 Summary



Publication History

Received: 13 August 2023

Accepted after revision: 22 August 2023

Accepted Manuscript online:
22 August 2023

Article published online:
16 October 2023

© 2023. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Eliel EL. Stereochemistry of Carbon Compounds . McGraw-Hill; New York: 1962
  • 2 Berova N, Polavarapu PL, Nakanishi K, Woody RW. Comprehensive Chiroptical Spectroscopy: Applications in Stereochemical Analysis of Synthetic Compounds, Natural Products, and Biomolecules, Vol. 2. Wiley; Hoboken: 2012
  • 3 MacKenzie LE, Pal R. Nat. Rev. Chem. 2021; 5: 109
  • 4 Sánchez-Carnerero EM, Agarrabeitia AR, Moreno F, Maroto BL, Muller G, Ortiz MJ, de La Moya S. Chem. Eur. J. 2015; 21: 13488
  • 5 Deng Y, Wang M, Zhuang Y, Liu S, Huang W, Zhao Q. Light Sci. Appl. 2021; 10: 1
  • 6 Zhang DW, Li M, Chen CF. Chem. Soc. Rev. 2020; 49: 1331
  • 7 Albano G, Pescitelli G, Di Bari L. Chem. Rev. 2020; 120: 10145
  • 8 Kumar J, Nakashima T, Kawai T. J. Phys. Chem. Lett. 2015; 6: 3445
  • 9 Mori T. Circularly Polarized Luminescence of Isolated Small Organic Molecule. Springer; Berlin: 2020
  • 10 Nagata Y, Mori T. Front. Chem. 2020; 8: 448
  • 11 Zhang Y, Yu S, Han B, Zhou Y, Zhang X, Gao X, Tang Z. Matter 2022; 837
  • 12 Rivera-Fuentes P, Alonso-Gómez JL, Petrovic AG, Seiler P, Santoro F, Harada N, Berova N, Rzepa HS, Diederich F. Chem. Eur. J. 2010; 16: 9796
  • 13 Hasegawa M, Sone Y, Iwata S, Matsuzawa H, Mazaki Y. Org. Lett. 2011; 13: 4668
  • 14 Hasegawa M, Iwata S, Sone Y, Endo J, Matsuzawa H, Mazaki Y. Molecules 2014; 19: 2829
  • 15 Hasegawa M, Endo J, Iwata S, Shimasaki T, Mazaki Y. Beilstein J. Org. Chem. 2015; 11: 972
  • 16 Kobayakawa K, Hasegawa M, Sasaki H, Endo J, Matsuzawa H, Sako K, Yoshida J, Mazaki Y. Chem. Asian J. 2014; 9: 2751
  • 17 Hasegawa M, Kurebayashi D, Matsuzawa H, Mazaki Y. Chem. Lett. 2018; 47: 989
  • 18 Tanaka H, Inoue Y, Mori T. ChemPhotoChem 2018; 2: 386
  • 19 Hassan Z, Spuling E, Knoll DM, Bräse S. Angew. Chem. Int. Ed. 2020; 59: 2156
  • 20 Sugiura K.-i. Front. Chem. 2020; 8: 700
  • 21 Paradies J. Synthesis 2011; 3749
  • 22 Hassan Z, Spuling E, Knoll DM, Lahann J, Bräse S. Chem. Soc. Rev. 2018; 6947
  • 23 Felder S, Wu S, Brom J, Micouin L, Benedetti E. Chirality 2021; 33: 506
  • 24 Teng JM, Zhang DW, Chen CF. ChemPhotoChem 2022; 6: e202100228
  • 25 Felder S, Delcourt ML, Contant D, Rodríguez R, Favereau L, Crassous J, Micouin L, Benedetti E. J. Mater. Chem. C 2023; 11: 2053
  • 26 Ishioka S, Hasegawa M, Hara N, Sasaki H, Nojima Y, Imai Y, Mazaki Y. Chem. Lett. 2019; 48: 640
  • 27 Morisaki Y, Gon M, Sasamori T, Tokitoh N, Chujo Y. J. Am. Chem. Soc. 2014; 136: 3350
  • 28 Morisaki Y, Chujo Y. Bull. Chem. Soc. Jpn. 2019; 92: 265
  • 29 Rota Martir D, Delforce L, Cordes DB, Slawin AM. Z, Warriner SL, Jacquemin D, Zysman-Colman EA. Inorg. Chem. Front. 2019; 7: 232
  • 30 Fagnani DE, Meese MJ, Abboud KA, Castellano RK. Angew. Chem. Int. Ed. 2016; 55: 10726
  • 31 Morisaki Y, Hifumi R, Lin L, Inoshita K, Chujo Y. Chem. Lett. 2012; 41: 990
  • 32 Bondarenko L, Dix I, Hinrichs H, Hopf H. Synthesis 2004; 2751
  • 33 Cinar ME, Oztruk T. Chem. Rev. 2015; 115: 3036
  • 34 Iyoda M, Shimizu H. Chem. Soc. Rev. 2015; 6411
  • 35 Zhang L, Colella NS, Cherniawski BP, Mannsfeld SC. B, Briseno AL. ACS Appl. Mater. Interfaces 2014; 6: 5327
  • 36 Fujiwara T, Muranaka A, Nishinaga T, Aoyagi S, Kobayashi N, Uchiyama M, Otani H, Iyoda M. J. Am. Chem. Soc. 2020; 142: 5933
  • 37 Zhang F, Götz G, Mena-Osteritz E, Weil M, Sarkar B, Kaim W, Bäuerle P. Chem. Sci. 2011; 2: 781
  • 38 Sakai T, Satou T, Kaikawa T, Takimiya K, Otsubo T, Aso Y. J. Am. Chem. Soc. 2005; 127: 8082
  • 39 Hasegawa M, Kobayakawa K, Matsuzawa H, Nishinaga T, Hirose T, Sako K, Mazaki Y. Chem. Eur. J. 2017; 23: 3267
  • 40 Meyer-Eppler G, Vogelsang E, Benkhäuser C, Schneider A, Schnakenburg G, Lützen A. Eur. J. Org. Chem. 2013; 4523
  • 41 Hasegawa M, Kobayakawa K, Nojima Y, Mazaki Y. Org. Biomol. Chem. 2019; 17: 8822
  • 42 Takimiya K, Otsubo T. Selenophenes as Hetero-Analogues of Thiophene-Based Materials. In Handbook of Thiophene-based Materials: Applications in Organic Electronics and Photonics, Vol. 1. Perepichka FI, Perepichka FD. Wiley; Chichester: 2009: 321
  • 43 Hasegawa M, Haga S, Nishinaga T, Mazaki Y. Org. Lett. 2020; 22: 3755
  • 44 Hasegawa M, Takahashi K, Inoue R, Haga S, Mazaki Y. Chem. Asian J. 2019; 14: 1647
  • 45 Hasegawa M, Takahashi K, Mazaki Y. Bull. Chem. Soc. Jpn. 2022; 95: 628
  • 46 Hasegawa M, Ishida Y, Sasaki H, Ishioka S, Usui K, Hara N, Kitahara M, Imai Y, Mazaki Y. Chem. Eur. J. 2021; 27: 16225
  • 47 Netherton MR, Fu GC. Org. Lett. 2001; 3: 4295
  • 48 Liao G, Zhou T, Yao QJ, Shi BF. Chem. Commun. 2019; 55: 8514
  • 49 Wencel-Delord J, Panossian A, Leroux FR, Colobert F. Chem. Soc. Rev. 2015; 44: 3418
  • 50 Yuan YX, Jia JH, Song YP, Ye FY, Zheng YS, Zang SQ. J. Am. Chem. Soc. 2022; 144: 5389
  • 51 Nakanishi S, Hara N, Kuroda N, Tajima N, Fujiki M, Imai Y. Org. Biomol. Chem. 2018; 16: 1093
  • 52 Takaishi K, Iwachido K, Ema T. J. Am. Chem. Soc. 2020; 142: 1774
  • 53 Sheng Y, Shen D, Zhang W, Zhang H, Zhu C, Cheng Y. Chem. Eur. J. 2015; 21: 13196
  • 54 Takaishi K, Murakami S, Yoshinami F, Ema T. Angew. Chem. Int. Ed. 2022; 61: e202204609
  • 55 Wang Y, Li Y, Liu S, Li F, Zhu C, Li S, Cheng Y. Macromolecules 2016; 49: 5444
  • 56 Gao X, Qin X, Yang X, Li Y, Duan P. Chem. Commun. 2019; 55: 5914
  • 57 Kawamoto M, Aoki T, Shiga N, Wada T. Chem. Mater. 2009; 21: 564
  • 58 Akagi K, Quo S, Mori T, Goh M, Piao G, Kyotani M. J. Am. Chem. Soc. 2005; 127: 14647
  • 59 Wu X, Han X, Xu Q, Liu Y, Yuan C, Yang S, Liu Y, Jiang J, Cui Y. J. Am. Chem. Soc. 2019; 141: 7081
  • 60 Matsuno T, Fukunaga K, Kobayashi S, Sarkar P, Sato S, Ikeda T, Isobe H. Chem. Asian J. 2020; 15: 3829
  • 61 Takaishi K, Kawamoto M, Tsubaki K. Org. Lett. 2010; 12: 1832
  • 62 Rajca A, Safronov A, Rajca S, Wongsriratanakul J. J. Am. Chem. Soc. 2000; 122: 3351
  • 63 Bandin M, Casolari S, Cozzi PG, Proni G, Schmohel E, Spada GP, Tagliavini E, Umani-Ronchi A. Eur. J. Inorg. Chem. 2010; 31: 491
  • 64 Nojima Y, Hasegawa M, Hara N, Imai Y, Mazaki Y. Chem. Commun. 2019; 55: 2749
  • 65 Nojima Y, Hasegawa M, Hara N, Imai Y, Mazaki Y. Chem. Eur. J. 2021; 27: 5923
  • 66 Krzeszewski M, Ito H, Itami K. J. Am. Chem. Soc. 2022; 144: 862
  • 67 Szyszko B, Chmielewski PJ, Przewoźnik M, Bialek MJ, Kupietz K, Bialońska A, Latos-Grazyński L. J. Am. Chem. Soc. 2019; 141: 6060
  • 68 Schaub TA, Prantl EA, Kohn J, Bursch M, Marshall CR, Leonhardt EJ, Lovell TC, Zakharov LN, Brozek CK, Waldvogel SR, Grimme S, Jasti R. J. Am. Chem. Soc. 2020; 142: 8763
  • 69 Schenk R, Müllen K, Wennerström O. Tetrahedron Lett. 1990; 31: 7367
  • 70 Robert A, Naulet G, Bock H, Vanthuyne N, Jean M, Giorgi M, Carissan Y, Aroulanda C, Scalabre A, Pouget E, Durola F, Coquerel Y. Chem. Eur. J. 2019; 25: 14364
  • 71 Kubo H, Shimizu D, Hirose T, Matsuda K. Org. Lett. 2020; 22: 9276
  • 72 Saikawa M, Nakamura T, Uchida J, Yamamura M, Nabeshima T. Chem. Commun. 2016; 52: 10727
  • 73 Ushiyama A, Hiroto S, Yuasa J, Kawai T, Shinokubo H. Org. Chem. Front. 2017; 4: 664
  • 74 Arrico L, Di Bari L, Zinna F. Chem. Eur. J. 2021; 27: 2920
  • 75 Hasegawa M, Hasegawa C, Nagaya Y, Tsubaki K, Mazaki Y. Chem. Eur. J. 2022; 28: e202202218
  • 76 He J, Yu M, Pang M, Fan Y, Lian Z, Wang Y, Wang W, Liu Y, Jiang H. Chem. Eur. J. 2022; 28: e202103832
  • 77 Wang J, Shi H, Wang S, Zhang X, Fang P, Zhou Y, Zhuang GL, Shao X, Du P. Chem. Eur. J. 2022; 28: e202103828
  • 78 Fang P, Chen M, Zhang X, Du P. Chem. Commun. 2022; 58: 8278
  • 79 Xu W, Yang XDi, Fan XB, Wang X, Tung CH, Wu LZ, Cong H. Angew. Chem. Int. Ed. 2019; 58: 3943
  • 80 Nogami J, Tanaka Y, Sugiyama H, Uekusa H, Muranaka A, Uchiyama M, Tanaka K. J. Am. Chem. Soc. 2020; 142: 9834
  • 81 Wang LH, Hayase N, Sugiyama H, Nogami J, Uekusa H, Tanaka K. Angew. Chem. Int. Ed. 2020; 59: 17951
  • 82 Senthilkumar K, Kondratowicz M, Lis T, Chmielewski PJ, Cybińska J, Zafra JL, Casado J, Vives T, Crassous J, Favereau L, Stȩpień M. J. Am. Chem. Soc. 2019; 141: 7421
  • 83 Malinčík J, Gaikwad S, Mora-Fuentes JP, Boillat M.-A, Prescimone A, Häussinger D, Campaña AG, Šolomek T. Angew. Chem. Int. Ed. 2022; 61: e202208591
  • 84 Sato K, Hasegawa M, Nojima Y, Hara N, Nishiuchi T, Imai Y, Mazaki Y. Chem. Eur. J. 2021; 27: 1323
  • 85 Hasegawa M, Nojima Y, Nagata Y, Usui K, Sugiura K, Mazaki Y. Eur. J. Org. Chem. 2023; 26: e202300656
  • 86 Martin RH. Angew. Chem., Int. Ed. Engl. 1974; 13: 649
  • 87 Goedicke C, Stegemeyer H. Tetrahedron Lett. 1970; 12: 937
  • 88 El Abed R, Ben Hassine B, Genêt JP, Gorsane M, Madec J, Ricard L, Marinetti A. Synthesis 2004; 2513