Synthesis
DOI: 10.1055/a-2273-2895
paper
Special Issue PSRC-10 (10th Pacific Symposium on Radical Chemistry)

Photo-Induced α-Oxyalkylation of Aryl Chlorides with Ethers and Alcohols through Homolytic Aromatic Substitution

Kohei Aoki
,
Kyohei Yonekura
,
Wataru Ejima
,
Shota Tanaka
,
Ami Shigeta
,
Eiji Shirakawa
This work has been supported financially in part by the Japan Science and Technology Corporation (JST CREST: JPMJCR18R4) and the Japan Society for the Promotion of Science (Grant-in-Aids for Scientific Research (B): 19H02728 to E.S.).


Dedicated to Prof. Dennis P. Curran on the occasion of his 70th birthday

Abstract

The α-oxyalkylation of aryl chlorides with ethers and alcohols using a small amount of a peroxide was found to be induced by photoirradiation. The reaction proceeds through a homolytic aromatic substitution (HAS) mechanism consisting of addition of an α-oxyalkyl radical to an aryl chloride and elimination of the chlorine atom to give the α-oxyalkylation product, where photoirradiation is considered to effect not only the initiation step to facilitate homolysis of a peroxide, but also the propagating radical chain.

Supporting Information



Publication History

Received: 23 January 2024

Accepted after revision: 21 February 2024

Accepted Manuscript online:
21 February 2024

Article published online:
12 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Palmer MH, McIntyre PS. Tetrahedron Lett. 1968; 9: 2147
    • 1b Buratti W, Gardini GP, Minisci F, Bertini F, Galli R, Perchinunno M. Tetrahedron 1971; 27: 3655
    • 1c Minisci F. Synthesis 1973; 1
    • 1d Minisci F, Vismara E, Fontana F. Heterocycles 1989; 28: 489
    • 2a Jin J, MacMillan DW. C. Angew. Chem. Int. Ed. 2015; 54: 1565
    • 2b Huff CA, Cohen RD, Dykstra KD, Streckfuss E, DiRocco DA, Krska SW. J. Org. Chem. 2016; 81: 6980
    • 2c Devari S, Shah BA. Chem. Commun. 2016; 52: 1490
    • 2d Zhang Y, Teuscher KB, Ji H. Chem. Sci. 2016; 7: 2111
    • 2e Kianmehr E, Fardpour M, Khan KM. Eur. J. Org. Chem. 2017; 2661
    • 2f Niu L, Liu J, Liang X.-A, Wang S, Lei A. Nat. Commun. 2019; 10: 467
    • 2g Vijeta A, Reisner E. Chem. Commun. 2019; 55: 14007
    • 2h Zhao H, Li Z, Jin J. New J. Chem. 2019; 43: 12533
    • 2i Xu W.-X, Dai X.-Q, Weng J.-Q. ACS Omega 2019; 4: 11285
    • 2j Bhakat M, Biswas P, Dey J, Guin J. Org. Lett. 2021; 23: 6886
    • 2k Li D.-S, Liu T, Hong Y, Cao C.-L, Wu J, Deng H.-P. ACS Catal. 2022; 12: 4473
    • 2l Zeng C.-L, Wang H, Gao D, Zhang Z, Ji D, He W, Liu C.-K, Yang Z, Fang Z, Guo K. Org. Lett. 2022; 24: 3244
    • 2m Lopat’eva ER, Krylov IB, Segida OO, Merkulova VM, Ilovaisky AI, Terent’ev AO. Molecules 2023; 28: 934
    • 2n Proctor RS. J, Phipps RJ. Angew. Chem. Int. Ed. 2019; 58: 13666
  • 3 Qvortrup K, Rankic DA, MacMillan DW. C. J. Am. Chem. Soc. 2014; 136: 626
    • 4a Kobayashi F, Fujita M, Ide T, Ito Y, Yamashita K, Egami H, Hamashima Y. ACS Catal. 2021; 11: 82
    • 4b Zhang S, Li L, Li J, Shi J, Xu K, Gao W, Zong L, Li G, Findlater M. Angew. Chem. Int. Ed. 2021; 60: 7275
    • 4c Wang X.-W, Li R.-X, Deng Y, Fu M.-Q.-H, Zhao Y.-N, Guan Z, He Y.-H. J. Org. Chem. 2023; 88: 329
  • 5 Wang J, Huang B, Gao Y, Yang C, Xia W. J. Org. Chem. 2019; 84: 6895
    • 6a Lipp A, Lahm G, Opatz T. J. Org. Chem. 2016; 81: 4890
    • 6b Nauth AM, Lipp A, Lipp B, Opatz T. Eur. J. Org. Chem. 2017; 2099
    • 6c Kamijo S, Kamijo K, Murafuji T. J. Org. Chem. 2017; 82: 2664
    • 6d Kamijo S, Kamijo K, Murafuji T. Synthesis 2019; 51: 3859
  • 7 Aoki K, Yonekura K, Ikeda Y, Ueno R, Shirakawa E. Adv. Synth. Catal. 2020; 362: 2200
    • 8a Ikeda Y, Ueno R, Akai Y, Shirakawa E. Chem. Commun. 2018; 54: 10471
    • 8b Yonekura K, Murooka M, Aoki K, Shirakawa E. Org. Lett. 2023; 25: 6682
  • 9 Ikeda Y, Matsukawa Y, Yonekura K, Shirakawa E. Eur. J. Org. Chem. 2021; 794
  • 10 Ikeda Y, Mandai T, Yonekura K, Shirakawa E. Chem. Lett. 2021; 50: 1006
  • 11 Yonekura K, Aoki K, Nishida T, Ikeda Y, Oyama R, Hatano S, Abe M, Shirakawa E. Chem. Eur. J. 2023; 29: e202302658
    • 12a Huang HM, Strater Z, Lambert TH. J. Am. Chem. Soc. 2020; 142: 1698
    • 12b Roy S, Chatterjee I. ACS Org. Inorg. Au 2022; 2: 306
    • 13a Steenken S, Schuchmann H.-P, von Sonntag C. J. Phys. Chem. 1975; 79: 763
    • 13b Dong X, Li Q, Li G, Lu H. J. Org. Chem. 2018; 83: 13402
    • 14a Ouchi A, Liu C, Kaneda M, Hyugano T. Eur. J. Org. Chem. 2013; 3807
    • 14b Hayakawa M, Shimizu R, Omori H, Shirota H, Uchida K, Mashimo H, Xu H, Yamada R, Niino S, Wakame Y, Liu C, Aoyama T, Ouchi A. Tetrahedron 2020; 76: 131557
    • 14c Hayakawa M, Shirota H, Hirayama S, Yamada R, Aoyama T, Ouchi A. J. Photochem. Photobiol., A 2021; 413: 113263
  • 15 Hayashi H, Wang B, Wu X, Teo SJ, Kaga A, Watanabe K, Takita R, Yeow EK. L, Chiba S. Adv. Synth. Catal. 2020; 362: 2223
  • 16 Ueno R, Shimizu T, Shirakawa E. Synlett 2016; 27: 741
  • 17 Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA. Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Korokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ. Gaussian 09, Revision D.01. Gaussian Inc; Wallingford: 2013
  • 18 Sassaman MB, Kotian KD, Prakash GK. S, Olah GA. J. Org. Chem. 1987; 52: 4314
  • 19 Wu X, Wan Y, Mahalingam AK, Murugaiah AM. S, Plouffe B, Botros M, Karlén A, Hallberg M, Gallo-Payet N, Alterman M. J. Med. Chem. 2006; 49: 7160
  • 20 Singh A, Arora A, Weaver JD. Org. Lett. 2013; 15: 5390
  • 21 Li B, Buzon RA, Zhang Z. Org. Synth. 2010; 87: 16
  • 22 Atkins JM, Vedejs E. Org. Lett. 2005; 7: 3351
  • 23 Okitsu T, Nagase K, Nishio N, Wada A. Org. Lett. 2012; 14: 708
  • 24 Chen B, Huang Z, Hu Z.-G, Liu X.-H, Weng J.-Q. ChemistrySelect 2023; 8: e202204773
  • 25 Li Y, Wang M, Fan W, Qian F, Li G, Lu H. J. Org. Chem. 2016; 81: 11743
  • 26 Kong Y, Xu W, Liu X, Weng J. Chin. Chem. Lett. 2020; 31: 3245
  • 27 Zhou J, Wang C, Huang L, Luo C, Ye S, Xu N, Zhu Y, Liu L, Ren Q, Chen Z, Song S, Li J. Green Chem. 2022; 24: 4606