Synlett
DOI: 10.1055/a-2283-5928
letter

The Difunctionalization of Alkenes Completed by DMTSM and CF3SO2Na without Metal Catalysts

Siwei Shen
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, P. R. of China
,
Jinzhao Gao
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, P. R. of China
,
Xiaofeng Luo
b   Chengdu Guibao Science and Technology Co, Ltd, Chengdu 610041 Sichuan, P. R. of China
,
Tianqiang Wang
b   Chengdu Guibao Science and Technology Co, Ltd, Chengdu 610041 Sichuan, P. R. of China
,
Peihua Liu
c   Research Institute of Oil and Gas Technology of Changqing Oilfield Company, Xian 710018, Shanxi, P. R. of China
,
Rulong Yan
a   State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 73000, Gansu, P. R. of China
› Author Affiliations
This work was supported by the National Natural Science Foundation of China (22371104), the Key Program of Natural Science Foundation of Gansu Province, China (22JR5RA408), the Sichuan Province Science and Technology Support Program (2023ZHCG0046); the Science and Technology Program of Gansu Province (23CXGA0047).


Abstract

The electrophilic thiolation of alkenes initiated by DMTSM and the addition of CF3SO2Na in one pot has been developed. This reaction also can be extended to ArSO2Na. This protocol features a good substrate scope, simple procedures, and mild reaction conditions and affords the desired products in moderate yields without metal catalysts.

Supporting Information



Publication History

Received: 31 January 2024

Accepted after revision: 07 March 2024

Accepted Manuscript online:
07 March 2024

Article published online:
22 March 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

    • 1a Xu XH, Matsuzaki K, Shibata N. Chem. Rev. 2015; 115: 731
    • 1b Besset T, Poisson T, Pannecoucke X. Chem. Eur. J. 2014; 20: 16830
    • 1c Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 1d Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 1e Wang J, Sanchez-Rosello M, Acena JL, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 2a Yuan Z, Wang H.-Y, Mu X, Chen P, Guo Y.-L, Liu G. J. Am. Chem. Soc. 2015; 137: 2468
    • 2b Muller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2c Purser S, Moore P.-R, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 2d Hagmann WK. J. Med. Chem. 2008; 51: 4359
    • 2e Meanwell NA. J. Med. Chem. 2011; 54: 2529
    • 2f Cametti M, Crousse B, Metrangolo P, Milani R, Resnati G. Chem. Soc. Rev. 2012; 41: 31
    • 2g Wang J, Sánchez-Rosello M, Aceña J.-L, del Pozo C, Sorochinsky AE, Fustero S, Soloshonok VA, Liu H. Chem. Rev. 2014; 114: 2432
    • 3a Danoun G, Bayarmagnai B, Gruenberg MF, Goossen LJ. Chem. Sci. 2014; 5: 1312
    • 3b Matheis C, Jouvin K, Goossen LJ. Org. Lett. 2014; 16: 5984
    • 3c Danoun G, Bayarmagnai B, Grünberg MF, Gooßen LJ. Angew. Chem. Int. Ed. 2013; 52: 7972
    • 3d Hansch C, Leo A, Taft RW. Chem. Rev. 1991; 91: 165
    • 3e Sheppard W. J. Am. Chem. Soc. 1963; 85: 1314
    • 3f Hendrickson JB, Giga A, Wareing J. J. Am. Chem. Soc. 1974; 96: 2275
    • 3g Goumont R, Kizilian E, Buncel E, Terrier F. Org. Biomol. Chem. 2003; 1: 1741
  • 4 Tanaka Y, Aikawa K, Nishida G, Homma M, Sogabe S, Igaki S, Hayano Y, Sameshima T, Miyahisa I, Kawamoto T, Tawada M, Imai Y, Inazuka M, Cho N, Imaeda Y, Ishikawa T. J. Med. Chem. 2013; 56: 9635
  • 5 Usera AR, Dolan PM, Kensler TW, Posner GH. Bioorg. Med. Chem. 2007; 15: 5509
    • 6a Wu P, Hilgraf R, Fokin VV. Adv. Synth. Catal. 2006; 348: 1079
    • 6b Hasegawa A, Naganawa Y, Fushimi M, Ishihara K, Yamamoto H. Org. Lett. 2006; 8: 3175
    • 6c Kargbo R, Takahashi Y, Bhor S, Cook GR, Lloyd-Jones GC, Shepperson IR. J. Am. Chem. Soc. 2007; 129: 3846
    • 6d Yanai H, Ogura H, Fukaya H, Kotani A, Kusu F, Taguchi T. Chem. Eur. J. 2011; 17: 11747
    • 6e Yanai H, Yoshino T, Fujita M, Fukaya H, Kotani A, Kusu F, Taguchi T. Angew. Chem. Int. Ed. 2013; 52: 1560
    • 7a Droumaguet CL, Mongin O, Werts MH. V, Blanchard-Desce M. Chem. Commun. 2005; 2802
    • 7b Mongin O, Porrès L, Charlot M, Katan C, Blanchard-Desce M. Chem. Eur. J. 2007; 13: 1481
    • 7c Terenziani F, Droumaguet CL, Katan C, Mongin O, Blanchard-Desce M. ChemPhysChem 2007; 8: 723
    • 7d Rouxel C, Droumaguet CL, Macé Y, Clift S, Mongin O, Magnier E, Blanchard-Desce M. Chem. Eur. J. 2012; 18: 12487
  • 8 Huang S, Li H, Xie T, Wei F, Tung C.-H, Xu Z. Org. Chem. Front. 2019; 6: 1663
    • 9a Yanai H, Fujita M, Taguchi T. Chem. Commun. 2011; 47: 7245
    • 9b Kawai H, Yuan Z, Tokunaga E, Shibata N. Org. Lett. 2012; 14: 5330
    • 9c Xu XH, Taniguchi M, Wang X, Tokunaga E, Ozawa T, Masuda H, Shibata N. Angew. Chem. Int. Ed. 2013; 52: 12628
    • 9d Kong HI, Gill MA, Hrdina AH, Crichton JE, Manthorpe JM. J. Fluorine Chem. 2013; 153: 151
    • 9e Alcaide B, Almendros P, Lazaro-Milla C. Chem. Commun. 2015; 51: 6992
    • 9f Zhao X, Huang Y, Qing F.-L, Xu X.-H. RSC Adv. 2017; 7: 47
    • 9g Das P, Shibata N. J. Org. Chem. 2017; 82: 11915
    • 9h Das P, Gondo S, Tokunaga E, Sumii Y, Shibata N. Org. Lett. 2018; 20: 558
    • 10a Baskin JM, Wang Z. Org. Lett. 2002; 4: 4423
    • 10b Cacchi S, Fabrizi G, Goggiamani A, Parisi LM, Bernini R. J. Org. Chem. 2004; 69: 5608
    • 10c Zhu W, Ma D. J. Org. Chem. 2005; 70: 2696
    • 10d Bian M, Xu F, Ma C. Synthesis 2007; 2951
    • 10e Huang F, Batey RA. Tetrahedron 2007; 63: 7667
    • 10f Srinivas BT. V, Rawat VS, Konda K, Sreedhar B. Adv. Synth. Catal. 2014; 356: 805
    • 10g Xu Y, Zhao J, Tang X, Wu W, Jiang H. Adv. Synth. Catal. 2014; 356: 2029
    • 10h Taniguchi N. Tetrahedron 2014; 70: 1984
  • 11 Ni J, Jiang Y, An Z, Lan J, Yan R. Chem. Commun. 2019; 55: 7343
    • 12a Fors BP, Buchwald SL. J. Am. Chem. Soc. 2009; 131: 12898
    • 12b Teverovskiy G, Surry DS, Buchwald SL. Angew. Chem. Int. Ed. 2011; 50: 7312
    • 12c Cullen SC, Shekhar S, Nere NK. J. Org. Chem. 2013; 78: 12194
  • 13 Hua LN, Li H, Qing FL, Huang Y, Xu XH. Org. Biomol. Chem. 2016; 14: 8443
    • 14a Helmkamp GK, Olsen BA, Pettitt DJ. J. Org. Chem. 1965; 30: 676
    • 14b Smallcombe SH, Caserio MC. J. Am. Chem. Soc. 1971; 93: 5826
    • 14c Anderson SA, Kim JK, Caserio MC. J. Org. Chem. 1978; 43: 4822
  • 15 Tang M, Han S, Huang S, Huang S, Xie LG. Org. Lett. 2020; 22: 9729
  • 16 Minato H, Miura T, Kobayashi M. Chem. Lett. 1975; 4: 701
    • 17a O’Malley GJ, Cava MP. Tetrahedron Lett. 1985; 26: 6159
    • 17b Capozzi G, Lucchini V, Marcuzzi F, Modena G. J. Chem. Soc., Perkin Trans. 1 1981; 3106
    • 17c Okuma K, Yasuda T, Takeshita I, Shioji K, Yokomori Y. Tetrahedron 2007; 63: 8250
    • 17d Okuma K, Takeshita I, Yasuda T, Shioji K. Chem. Lett. 2006; 35: 1122
  • 18 Amat M, Alvarez M, Bonjoch J, Casamitjana N, Gracia J, Lavilla R, Garcias X, Bosch J. Tetrahedron Lett. 1990; 31: 3453
    • 19a Trost BM, Shibata T. J. Am. Chem. Soc. 1982; 104: 3225
    • 19b Trost BM, Shibata T, Martin SJ. J. Am. Chem. Soc. 1982; 104: 3228
    • 19c Trost BM, Martin SJ. J. Am. Chem. Soc. 1984; 106: 4263
    • 20a Haufe G, Alvernhe G, Anker D, Laurent A, Saluzzo C. Tetrahedron Lett. 1988; 29: 2311
    • 20b Haufe G, Alvernhe G, Anker D, Laurent A, Saluzzo C. J. Org. Chem. 1992; 57: 714
    • 20c Blomberg L, Norberg T. Carbohydr. Chem. 1992; 11: 751
  • 21 Alonso F, Moglie Y, Radivoy G, Yus M. J. Org. Chem. 2013; 78: 5031
  • 23 Alikhani Z, Albertson AG, Walter CA, Masih PJ, Kesharwani T. J. Org. Chem. 2022; 87: 6312
  • 24 Chen S, Wang J, Xie LG. Org. Biomol. Chem. 2021; 19: 4037
  • 25 Tang M, Wei Y, Huang S, Xie LG. Org. Lett. 2022; 24: 7026
    • 26a Tang M, Wang YX, Huang S, Xie LG. Org. Chem. Front. 2023; 10: 2416
    • 26b Tang M, Wang Y, Huang S, Xie LG. J. Org. Chem. 2023; 88: 15466
    • 26c Wang J, Tang M, Gu W, Huang S, Xie LG. J. Org. Chem. 2022; 87: 12482