Synthesis
DOI: 10.1055/a-2326-6416
paper
Special Issue PSRC-10 (10th Pacific Symposium on Radical Chemistry)

Sodium-Mediated Reductive anti-Dimagnesiation of Diarylacetyl­enes with Magnesium Bromide

,
,
,
This work was supported by Japan Science and Technology Agency (JST) Core Research for Evolutional Science and Technology (CREST, Grant Number JPMJCR19R4) as well as Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP19H00895 and JP24H02208 to H.Y.


This paper is dedicated to Professor Dr. Thorsten Bach on his 60th birthday.

Abstract

Diarylacetylenes undergo anti-dimagnesiation using magnesium bromide and sodium dispersion to afford (E)-1,2-dimagnesioalkenes. This dimagnesiation utilizes simple magnesium bromide as a reduction-resistant electrophile, contrasting with the previously reported dimagnesiation using tricky organomagnesium halides. The resulting vicinal double Grignard reagents react with various electrophiles to yield multisubstituted alkenes stereoselectively.

Supporting Information



Publication History

Received: 28 April 2024

Accepted after revision: 14 May 2024

Accepted Manuscript online:
14 May 2024

Article published online:
28 May 2024

© 2024. Thieme. All rights reserved

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

 
  • References

  • 1 Barbier P. C. R. Hebd. Seances Acad. Sci. 1899; 128: 110
  • 2 Grignard V. C. R. Hebd. Seances Acad. Sci. 1900; 130: 1322
  • 3 Seyferth D. Organometallics 2009; 28: 1598
    • 4a The Chemistry of Organomagnesium Compounds, Part 1. Rappoport Z, Marek I. John Wiley & Sons, Ltd; Chichester: 2008
    • 4b Organometallics in Synthesis Third Manual. Schlosser M. Wiley; Chichester: 2013
    • 4c Inoue A, Oshima K. In Main Group Metals in Organic Synthesis, Chap. 3. Yamamoto H, Oshima K. Wiley-VCH; Weinheim: 2004
  • 5 Knochel P, Gavryushin A, Brade K. In The Chemistry of Organomagnesium Compounds, Part 2. Rappoport Z, Marek I. John Wiley & Sons, Ltd; Chichester: 2008: 512
    • 6a Knochel P, Dohle W, Gommermann N, Kneisel FF, Kopp F, Korn T, Sapountzis I, Vu VA. Angew. Chem. Int. Ed. 2003; 42: 4302
    • 6b Kitagawa K, Inoue A, Shinokubo H, Oshima K. Angew. Chem. Int. Ed. 2000; 39: 2481
  • 7 Dange D, Gair AR, Jones DD. L, Juckel M, Aldridge S, Jones C. Chem. Sci. 2019; 10: 3208
  • 8 Liu H.-Y, Neale SE, Hill MS, Mahon MF, McMullin CL, Richards E. Organometallics 2024; 43: 879
    • 9a Takahashi F, Kurogi T, Yorimitsu H. Nat. Synth. 2023; 2: 162
    • 9b Takahashi F, Yorimitsu H. Chem. Eur. J. 2023; 29: e202203988
  • 10 Yamaguchi H, Takahashi F, Kurogi T, Yorimitsu H. Chem. Asian J. 2024; in press DOI: 10.1002/asia.202400384.
  • 11 Rieke RD, Hudnall PM. J. Am. Chem. Soc. 1972; 94: 7178
  • 12 Review on Na dispersion in organic synthesis: De PB, Asako S, Ilies L. Synthesis 2021; 53: 3180

    • Selective examples of reductive transformations using Na dispersion:
    • 13a Gissor A, Becht J, Desmurs JR, Pevere V, Wagner A, Mioskowski C. Angew. Chem. Int. Ed. 2002; 41: 340
    • 13b An J, Work DN, Kenyon C, Procter DJ. J. Org. Chem. 2014; 79: 6743
    • 13c Han M, Ma X, Yao S, Ding Y, Yan Z, Adijiang A, Wu Y, Li H, Zhang Y, Lei P, Ling Y, An J. J. Org. Chem. 2017; 82: 1285
    • 13d Han M, Ding Y, Yan Y, Li H, Luo S, Adijiang A, Ling Y, An J. Org. Lett. 2018; 20: 3010
    • 13e Lei P, Ding Y, Zhang X, Adijiang A, Li H, Ling Y, An J. Org. Lett. 2018; 20: 3439
    • 13f Zhang B, Li H, Ding Y, Yan Y, An J. J. Org. Chem. 2018; 83: 6006
    • 13g Ding Y, Luo S, Adijiang A, Zhao H, An J. J. Org. Chem. 2018; 83: 12269
    • 13h Asako S, Nakajima H, Takai K. Nat. Catal. 2019; 2: 297
    • 13i Asako S, Takahashi I, Nakajima H, Ilies L, Takai K. Commun. Chem. 2021; 4: 76
    • 13j Asako S, Takahashi I, Kurogi T, Murakami Y, Ilies L, Takai K. Chem. Lett. 2022; 51: 38

      Our examples of reductive transformations using Na dispersion:
    • 14a Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2019; 21: 4739
    • 14b Fukazawa M, Takahashi F, Nogi K, Sasamori T, Yorimitsu H. Org. Lett. 2020; 22: 2303
    • 14c Ito S, Fukazawa M, Takahashi F, Nogi K, Yorimitsu H. Bull. Chem. Soc. Jpn. 2020; 93: 1171
    • 14d Wang S, Kaga A, Yorimitsu H. Synlett 2021; 32: 219
    • 14e Ito S, Takahashi F, Yorimitsu T. Asian J. Org. Chem. 2021; 10: 1440
    • 14f Fukazawa M, Takahashi F, Yorimitsu H. Org. Lett. 2021; 23: 4613
    • 14g Koyama S, Takahashi F, Saito H, Yorimitsu H. Org. Lett. 2021; 23: 8590
    • 14h Miwa K, Aoyagi S, Sasamori T, Morisako S, Ueno H, Matsuo Y, Yorimitsu H. Molecules 2022; 27: 450
    • 14i Wang S, Kaga A, Kurogi T, Yorimitsu H. Org. Lett. 2022; 24: 1105
    • 14j Koyama S, Takahashi F, Saito H, Yorimitsu H. Synthesis 2023; 55: 1744
    • 14k Miwa K, Aoyagi S, Amaya T, Sasamori T, Morisako S, Kurogi T, Yorimitsu H. Chem. Eur. J. 2023; 29: e202301557
    • 14l Fukazawa M, Takahashi F, Kurogi T, Yorimitsu H. Chem. Asian J. 2024; 19: e202400100
  • 15 Oppenauer RV. Recl. Trav. Chim. Pays-Bas 1937; 56: 137
    • 16a Knorr R, Lattke E. Tetrahedron Lett. 1977; 18: 3969
    • 16b Maercker A, Kemmer M, Wang HC, Dong D.-H, Szwarc M. Angew. Chem. Int. Ed. 1998; 37: 2136
  • 17 Knochel P, Yeh MC. P, Berk SC, Talbert J. J. Org. Chem. 1988; 53: 2390
  • 18 Miyamoto R, Kanamori K, Nakagawa H, Tanaka H, Kaji H. ACS Sustainable Chem. Eng. 2024; 12: 6509
  • 19 Wang X, Zhang C.-Y, Tu H.-Y, Zhang A.-D. Eur. J. Org. Chem. 2016; 5243
  • 20 Yuan G.-Q, Jiang H.-F, Lin C. Tetrahedron 2008; 64: 5866