Synthesis 2014; 46(20): 2751-2756
DOI: 10.1055/s-0033-1338661
paper
© Georg Thieme Verlag Stuttgart · New York

Asymmetric Transfer Hydrogenation of 3-(Trifluoromethyl)quinolines

Ran-Ning Guo
a   Department of Chemistry, Dalian University of Technology, Dalian 116012, P. R. of China
b   State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. of China   Fax: +86(411)84379220   Email: ygzhou@dicp.ac.cn
,
Zhang-Pei Chen
b   State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. of China   Fax: +86(411)84379220   Email: ygzhou@dicp.ac.cn
,
Xian-Feng Cai
b   State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. of China   Fax: +86(411)84379220   Email: ygzhou@dicp.ac.cn
,
Yong-Gui Zhou*
b   State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. of China   Fax: +86(411)84379220   Email: ygzhou@dicp.ac.cn
› Author Affiliations
Further Information

Publication History

Received: 26 May 2014

Accepted after revision: 25 June 2014

Publication Date:
24 July 2014 (online)


Abstract

A chiral phosphoric acid-catalyzed asymmetric transfer hydrogenation of 3-(trifluoromethyl)quinolines was successfully developed with up to 98% ee. The new method provides a direct and facile access to chiral 2,3-disubstituted 1,2,3,4-tetrahydroquinoline derivatives containing a stereogenic trifluoromethyl group.

Supporting Information

 
  • References

    • 1a Ma J.-A, Cahard D. Chem. Rev. 2004; 104: 6119
    • 1b Purser S, Moore PR, Swallow S, Gouverneur V. Chem. Soc. Rev. 2008; 37: 320
    • 1c Ma J.-A, Cahard D. Chem. Rev. 2008; 108: PR1
    • 1d Cahard D, Xu X, Couve-Bonnaire S, Pannecoucke X. Chem. Soc. Rev. 2010; 39: 558
    • 1e Zheng Y, Ma J.-A. Adv. Synth. Catal. 2010; 352: 2745
    • 1f Nie J, Guo H.-C, Cahard D, Ma J.-A. Chem. Rev. 2011; 111: 455
    • 1g He H.-R, Huang Y.-Y, Verpoort F. Acta Chim. Sin. 2013; 71: 700
    • 2a Hiyama T. Organofluorine Compounds: Chemistry and Applications. Springer; New York : 2000
    • 2b Begue J.-P, Bonnet-Delpon D. Bioorganic and Medicinal Chemistry of Fluorine . Wiley; Hoboken: 2000
    • 2c Müller K, Faeh C, Diederich F. Science 2007; 317: 1881
    • 2d Furuya T, Kamlet AS, Ritter T. Nature 2011; 473: 470
  • 3 Petrov VA. Fluorinated Heterocyclic Compounds: Synthesis, Chemistry, and Applications. Wiley; New Jersey: 2009

    • For recent reviews, see:
    • 4a Tomashenko OA, Grushin VV. Chem. Rev. 2011; 111: 4475
    • 4b Pan F, Shi Z. Acta Chim. Sin. 2012; 70: 1679
    • 4c Besset T, Schneider C, Cahard D. Angew. Chem. Int. Ed. 2012; 51: 5048
    • 4d Studer A. Angew. Chem. Int. Ed. 2012; 51: 8950
    • 4e Liu H, Gu Z.-H, Jiang X.-F. Adv. Synth. Catal. 2013; 355: 617
    • 4f Chu L, Qing F.-L. Acc. Chem. Res. 2014; 47: 1513
  • 5 Akiyama T, Itoh J, Yokota K, Fuchibe K. Angew. Chem. Int. Ed. 2004; 43: 1566
  • 6 Uraguchi D, Terada M. J. Am. Chem. Soc. 2004; 126: 5356

    • For reviews, see:
    • 7a You S.-L, Cai Q, Zeng M. Chem. Soc. Rev. 2009; 38: 2190
    • 7b Nie J, Zhang G.-W, Wang L, Zheng D.-H, Zheng Y, Ma J.-A. Eur. J. Org. Chem. 2009; 3145
    • 7c Terada M. Synthesis 2010; 1929
    • 7d Rueping M, Kuenkel A, Atodiresei I. Chem. Soc. Rev. 2011; 40: 4539
    • 7e Wu X, Li M, Gong L. Acta Chim. Sin. 2013; 71: 1091
  • 8 Rueping M, Sugiono E, Azap C, Theissmann T, Bolte M. Org. Lett. 2005; 7: 3781
  • 9 Hoffmann S, Seayad AM, List B. Angew. Chem. Int. Ed. 2005; 44: 7424

    • For selected examples, see references 8, 9 and:
    • 10a Storer RI, Carrera DE, Ni Y, MacMillan DW. C. J. Am. Chem. Soc. 2006; 128: 84
    • 10b Mayer S, List B. Angew. Chem. Int. Ed. 2006; 45: 4193
    • 10c Hoffmann S, Nicoletti M, List B. J. Am. Chem. Soc. 2006; 128: 13074
    • 10d Martin NJ. A, List B. J. Am. Chem. Soc. 2006; 128: 13368
    • 10e Li G, Liang Y, Antilla JC. J. Am. Chem. Soc. 2007; 129: 5830
    • 10f Kang Q, Zhao Z.-A, You S.-L. Adv. Synth. Catal. 2007; 349: 1657
    • 10g Kang Q, Zhao Z.-A, You S.-L. Org. Lett. 2008; 10: 2031
    • 10h Rueping M, Brinkmann C, Antonchick AP, Atodiresei I. Org. Lett. 2010; 12: 4604
    • 10i Wakchaure VN, Zhou J, Houffmann S, List B. Angew. Chem. Int. Ed. 2010; 49: 4612
    • 10j Henseler A, Kato M, Mori K, Akiyama T. Angew. Chem. Int. Ed. 2011; 50: 8180
    • 10k Zhang Z, Jain P, Antilla JC. Angew. Chem. Int. Ed. 2011; 50: 10961
    • 10l Chen Q.-A, Chen M.-W, Yu C.-B, Shi L, Wang D.-S, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2011; 133: 16432
    • 10m Chen M.-W, Chen Q.-A, Duan Y, Ye Z.-S, Zhou Y.-G. Chem. Commun. 2012; 48: 1698
    • 10n Yin Q, Wang S.-G, You S.-L. Org. Lett. 2013; 15: 2688
    • 10o Saito K, Kajiwara Y, Akiyama T. Angew. Chem. Int. Ed. 2013; 52: 13284
    • 10p Chen Z.-P, Chen M.-W, Guo R.-N, Zhou Y.-G. Org. Lett. 2014; 16: 1406
    • 11a Rueping M, Antonchick AP, Theissmann T. Angew. Chem. Int. Ed. 2006; 45: 3683
    • 11b Guo Q.-S, Du D.-M, Xu J. Angew. Chem. Int. Ed. 2008; 47: 759
    • 11c Rueping M, Theissmann T, Raja S, Bats JW. Adv. Synth. Catal. 2008; 350: 1001
    • 11d Rueping M, Theissmann T. Chem. Sci. 2010; 1: 473
    • 11e Rueping M, Tato F, Schoepke FR. Chem. Eur. J. 2010; 16: 2688
    • 11f Rueping M, Koenigs RM. Chem. Commun. 2011; 47: 304
    • 11g Rueping M, Theissmann T, Stoeckel M, Antonchick AP. Org. Biomol. Chem. 2011; 9: 6844
    • 11h Chen Q.-A, Wang D.-S, Zhou Y.-G, Duan Y, Fan H.-J, Yang Y, Zhang Z. J. Am. Chem. Soc. 2011; 133: 6126
    • 11i Chen Q.-A, Gao K, Duan Y, Ye Z.-S, Shi L, Yang Y, Zhou Y.-G. J. Am. Chem. Soc. 2012; 134: 2442
    • 11j Tu X.-F, Gong L.-Z. Angew. Chem. Int. Ed. 2012; 51: 11346
    • 11k Cai X.-F, Chen M.-W, Ye Z.-S, Guo R.-N, Shi L, Li Y.-Q, Zhou Y.-G. Chem. Asian J. 2013; 8: 1381
    • 11l Stemper J, Isaac K, Pastor J, Frison G, Retailleau P, Voituriez A, Betzer J.-F, Marinetti A. Adv. Synth. Catal. 2013; 355: 3613
    • 11m Wang S.-G, You S.-L. Angew. Chem. Int. Ed. 2014; 53: 2194
    • 11n Cai X.-F, Guo R.-N, Feng G.-S, Wu B, Zhou Y.-G. Org. Lett. 2014; 16: 2680

      For recent reviews on asymmetric reactions using HEH as hydrogen source, see:
    • 12a Ouellet SG, Walji AM, Macmillan DW. C. Acc. Chem. Res. 2007; 40: 1327
    • 12b You S.-L. Chem. Asian J. 2007; 2: 820
    • 12c Connon SJ. Org. Biomol. Chem. 2007; 5: 3407
    • 12d Rueping M, Sugiono E, Schoepke FR. Synlett 2010; 852
    • 12e Rueping M, Dufour J, Schoepke FR. Green Chem. 2011; 13: 1084
    • 12f Zheng C, You S.-L. Chem. Soc. Rev. 2012; 41: 2498

      For recent reviews, see:
    • 13a Zhou Y.-G. Acc. Chem. Res. 2007; 40: 1357
    • 13b Wang D.-S, Chen Q.-A, Lu S.-M, Zhou Y.-G. Chem. Rev. 2012; 112: 2557
    • 13c Glorius F. Org. Biomol. Chem. 2005; 3: 4171
    • 13d Chen Q.-A, Ye Z.-S, Duan Y, Zhou Y.-G. Chem. Soc. Rev. 2013; 42: 497
    • 13e Lu S.-M, Han X.-W, Zhou Y.-G. Chin. J. Org. Chem. 2005; 25: 634

      For selected examples on asymmetric reduction of quinolines, see references 11a,b,i,j and:
    • 14a Wang W.-B, Lu S.-M, Yang P.-Y, Han X.-W, Zhou Y.-G. J. Am. Chem. Soc. 2003; 125: 10536
    • 14b Zhou H, Li Z, Wang Z, Wang T, Xu L, He Y, Fan Q.-H, Pan J, Gu L, Chan AS. C. Angew. Chem. Int. Ed. 2008; 47: 8464
    • 14c Wang C, Li C, Wu X, Pettman A, Xiao J. Angew. Chem. Int. Ed. 2009; 48: 6524
    • 14d Wang T, Zhuo L.-G, Li Z, Chen F, Ding Z, He Y, Fan Q.-H, Xiang J, Yu Z.-X, Chan AS. C. J. Am. Chem. Soc. 2011; 133: 9878
  • 15 The cis-isomers of products are formed in high selectivity and, unless otherwise stated, they are the only visible products.
  • 16 The relative configuration are proposed by comparison of their coupling constants in 1H NMR spectra and also by analogy with the compound 4f.
  • 17 CCDC 998021 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge at www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44(1223)336033; E-mail: deposit@ccdc.cam.ac.uk.